
Global Calculator Cross sector Workshop

Products & Manufacturing of the Global Calculator

Workshop of May 9th 2014 (version of July 17th)

- This document
 - Supported various workshop discussions (including April 25th 2014)
 - Addresses cross-industry assumptions to refine the model
 - Does not aim at addressing industry specific assumptions; these are addressed through sector specific consultations which are available through these links (<u>cement</u>, <u>steel</u>, <u>chemicals</u>)
- The model was subsequently updated however it is still a work in progress as of July 2014. Some non processed expert feedback is noted within the document
- You are more than welcome to share feedback and we will try to include it in future version of the analysis. For this reason, this document will continuously update itself until September 1st
- All this documentation is open source

Content

 Introduction to the Global Calculator 	9-10h
 2011 overview of energy and materials Current energy demand Current product demand Modelling dynamics : Activity → Product → Material 	10-11h00 ➔ Resources
 2050 growth of materials and emissions 	
 Materials growth Growth depending on ambition level Discussion on Material Switch 	11h00-12h00
 GHG emissions growth Growth depending on ambition level Discussion on ambition level alignment Discussion on CCS 	12h00-14h00 (&lunch)
 Other Electricity demand response potential 	14h00-14h30

The following stakeholders will be provided with an opportunity to review the cross sector assumptions ⁽¹⁾

Global **C**alculator

Federations and organisations

WBCSD, Cement sustainability Initiative

Roland Hunziker

Worldsteel Association

Henk Reimink, Clare Broadbent

CEFIC

- Peter Botschek, Isabelle Chaput (alumni) CEPI
- Marco Mensink

Zero Emissions Platform (ZEP)

- Gert-Jan van der Panne
 European Wood Federation (CEI Bois)
 Institute of Industrial perspective (alumni)
- Julia Reinaud

World Aluminium

Chris Bayliss

Legend

Presence at workshop or later

Academic, consultancies & research groups

- **Dechema** Florian Ausfelder
- Fraunhofer institute, Marlene Arens
- Steel VDEh Marten Sprecher
- Tsinghua University
- **UK Engineering** and Physical Sciences Research Council (EPSRC), author of With both eyes open, Jonathan M Cullen
- LBNL (China Energy Group)
- BEE (India)
- TERI

Companies in other sectors

- **Dow** Michael Mazor
- Vinci
- Toyota
- Bombardier
- GE

NGOs & cooperation agencies

- Greenpeace, Jan Vande Putte
- WWF
- GIZ

Agenda

Global **C**alculator

Introduction to the global calculator

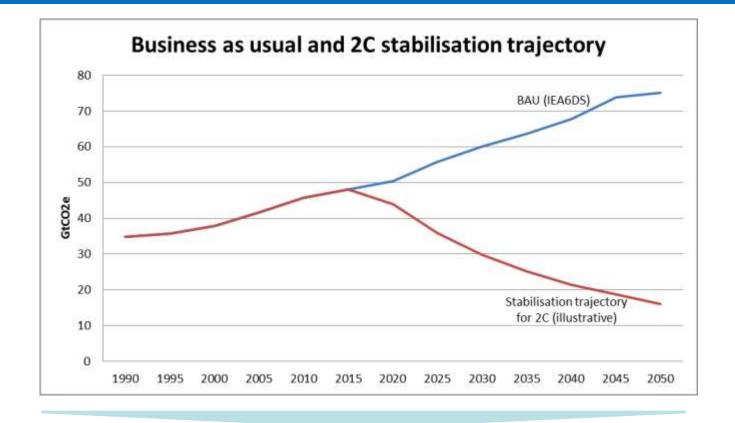
Background

Global Calculator

Team & Model structure

Expert & Literature review

Warning messages

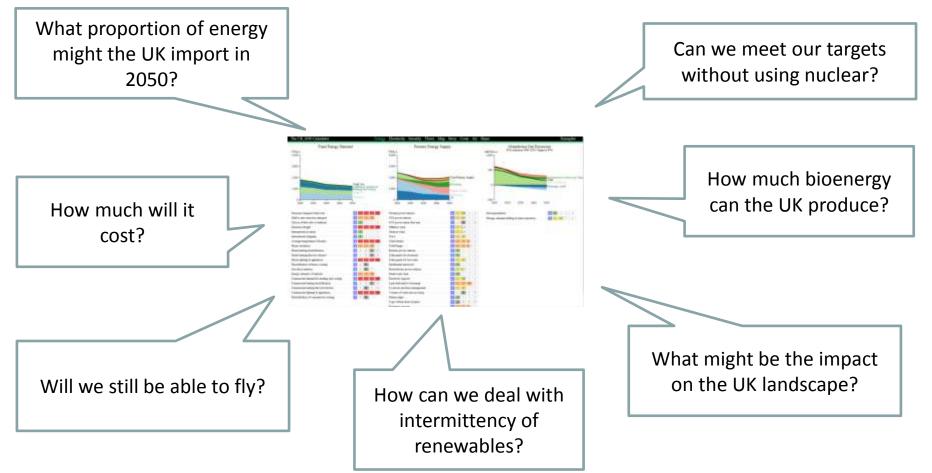

2011 overview of energy and material demand

2050 growth of materials and emissions

Aluminium assumptions summary

Countries have committed to keep the global mean temperature rise to 2C warming

Global **C**alculator


The UNFCCC negotiations in December 2015 will be critical.

6

The UK set a legal requirement to reduce its emissions by 80% by 2050 from 1990 levels

Global **C**alculator

Despite having sophisticated optimising models, the UK built its "2050 Calculator"

http://2050-calculator-tool.decc.gov.uk/

The UK Calculator has had an impact within and outside of government

Global **C**alculator

Within government

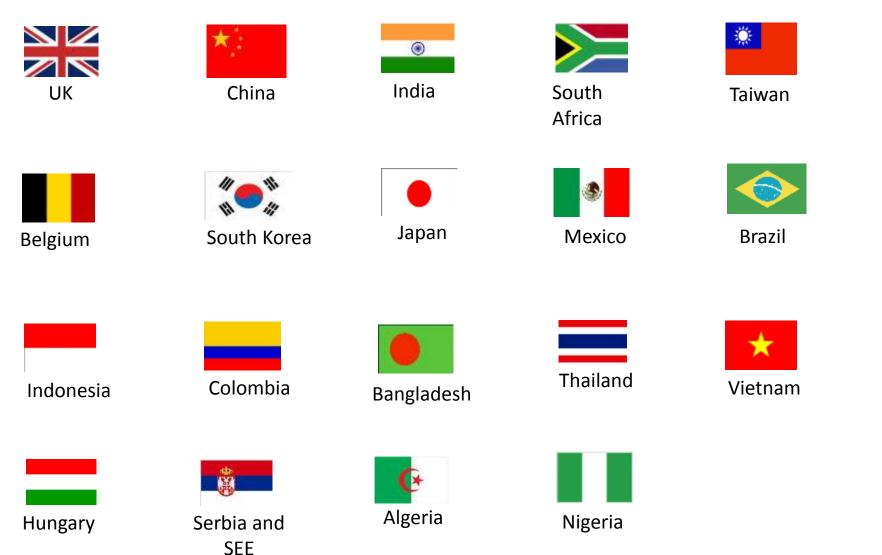
Outside government

Informing UK Government energy strategy

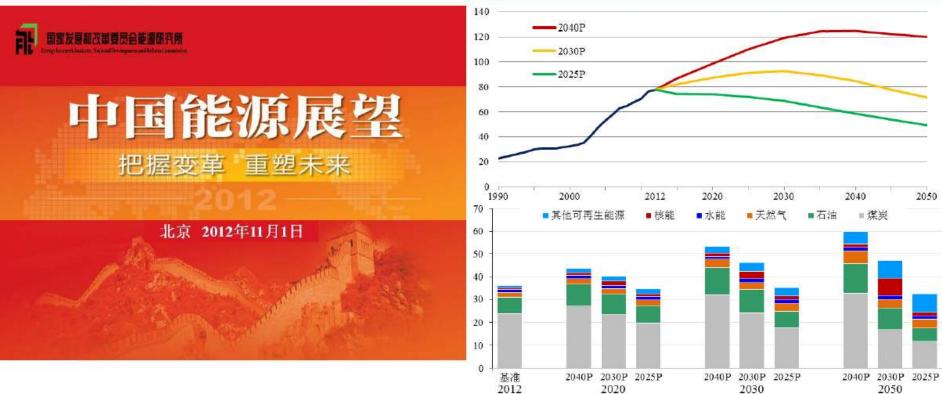
- Electricity market reform
- Heat strategy
- Bioenergy strategy
- Carbon Plan 2011
- Urgent analysis (e.g. for Cabinet ministers, and post Fukushima)

Energising debate among NGOs, businesses and politicians

Expert pathways nationalgrid



- Calculator adopted as an analytical and educational tool
 CAMERITOR
- Briefing for MPs, and cited in Hansard


Other countries have built or are building 2050 Calculators

Global **C**alculator

Support further research

- The tool support the forthcoming publication of "China Energy Outlook 2014"
- This series publications won high praise for both academic and practical value, <u>http://www.eri.org.cn/news_zj.php?cid=27&aid=2172</u>

中国2050能源经济发展路径

Agenda

Global **C**alculator

Introduction to the global calculator

Background

Global Calculator

Team & Model structure

Expert & Literature review

Warning messages

2011 overview of energy and material demand

2050 growth of materials and emissions

Aluminium assumptions summary

But the Country Calculators cannot give a global picture, so we started scoping out a Global Calculator

					•	ole, MARKAL s		1011
BARRAL DATABLE FRUIT	Copy (1) - BIV WIR MARKED THEORY	A	-	Concession in the			CONTINUED IN	
Ede Edit Dan Ban Ban	Card West 1940 Los West Annual Physics and Physics							
第日 劇創門 町	TT Reportingenet Sain	Management						
Data Hangement Scenator	ALCONO. WALL				Selected Sciences			
Naie	Dysogley		ested Mode	+	New	Deceptor	Hudred	
B. SELTICS TRESHED TRESHED SELENCE SIMMAND SELENCE SELENCE SELENCE SELENCE SELENCE SELENCE SELENCE SELENCE SELENCE	Here altered have Data for account Res Providencial and provide Transformation (Page20) Transform (PAD) - Janv08 Interrupt metalan to (CEM) - AppCohen theory (PAD) - Janv08 - AppCohen theory (PAD) - Cohen theory (PAD) - Janv08 - Reference provide the school to used	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	000/07/2017/54 2000/0 000/07/2017/54 2010/0 000/08/021334 2010/0 000/08/021334 2010/0 000/08/021433 2010/0 000/08/021432 2010/0 01/08/04/021022 2000/0 01/08/04/021022 2000/0 01/08/04/021022 2000/0 01/08/0517/60 2010/0 01/08/0517/60 2010/0	/10 18/00	B DOLITED B INCLAID B INCLAID B 35F14620 B 35F14620 B 3780F14620 B 4780F14620 B 4780F14620 B 4580 B 45800 B 45800 B 4580 B 45800 B 45800 B 4580	Next detend here 24 is that some in Presults Presultering some (FlogDD) Somission some (FlogDD) Industry MED: JourdD) Interrept House MED: MarkO Starteget House MED: MarkO Starteget House MED: JourdD) Additional profession (MED: MarkO Additional profession (MED: MarkO Additional profession) Ending Campare and Extension Releases process than EAVE Constances and Extension	2004/04/201754 [20] 2011/04/2016000 2014/04/2016000 2014/04/201600 2014/04/201600 2014/04/201600 2004/04/201600 2014/04/201600 2014/04/201600 2013/04/201600 2013/04/201600	
B DOLLART_DIS B DOLLART_DIS B DOLLART_STAND Next. Copr. Deals Results Management	Serie check - quarter the constraint. Cano Constraint on Sections that could be used Serie check - half the constraint. Constraint ()	to coverg_HGHER GR. 20	913/95/91 17.38 2912/9 913/95/27 15.35 3013/9 913/95/08 17.38 3013/9	107 15.28	B BO LINE, 625 B BO LINE, SPANE B BO LINE, SPANE B BO LINE, MALF DemoData ERDate	Enc. dwdx - game fer cardwell Content or laneau Content or laneau far nud lie coeffic or lang, HG - San cheide, All the sorticate Content or laneau flui [Auchtool] Rath Fluit.]	2013/05/01 17:20 2013/06/27:10:28 2013/06/01 17:28	
Case.	Description	Tratan	Dented	Data: 1+	Colorited Eareri Marie	Descapion	Cented	
ина 3 П-Р. ЛОВО 3 П-Р. Дово 3 П-Р. Дово 3 П-Р. Дово 3 П-Р. ЛОВО 3 П-Р. ЛОССИИЕ 3 П-Р.	The B Pite Electricity Dissubstration for Pitel & A the Electricity Dissubstration for Pitel A for Electricity Dissubstration for Pitel C for Electricity Dissubstrations Pitel C for Electricity Dissubstration for Pitel D for Electricity Dissubstration for Pitel A for Electricity Dissubstration for Pitel A for Electricity Dissubstration for	I BANK ARECTAR AND CHARMAN ARECTAR AND	EQUARD/14 14 12 EQUARD/14 14 12 EQUARD/14 14 13 OPA402/14 14 13 OPA402/14 14 13 OPA402/14 12 11 OPA402/14 12 11		Tanin Post (1)			

So we decided to build a Global Calculator model.

Global

Calculator

We want to help people debate global climate, energy, food and land issues using a common platform

"We know there's no way all 7 billion of us can consume at western levels while keeping within environmental limits."

Alex Evans, NYC Centre on International Cooperation

"The potential of renewable energy is vast and far greater than that of nuclear power or climate changing fossil fuels."

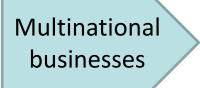
Greenpeace

"While it may be theoretically possible to stabilize the climate without nuclear power, in the real world there is no credible path to climate stabilization that does not include a substantial role for nuclear power."

Open letter from leading climate scientists

"I think the cost of energy will come down when we make this transition to renewable energy."

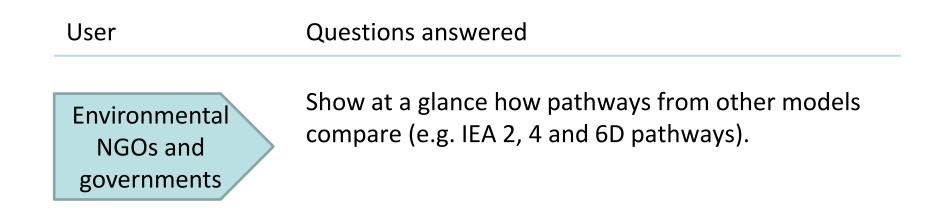
Al Gore


"Earth provided enough to satisfy every man's need, but not every man's greed." MK Gandhi The Global Calculator will help experts communicate more effectively with influential decision makers

Global **C**alculator

Sector experts e.g. academics; experts within government, industry, NGOs. Influential decision makers (e.g. leaders of businesses, NGOs, senior govt officials and politicians)

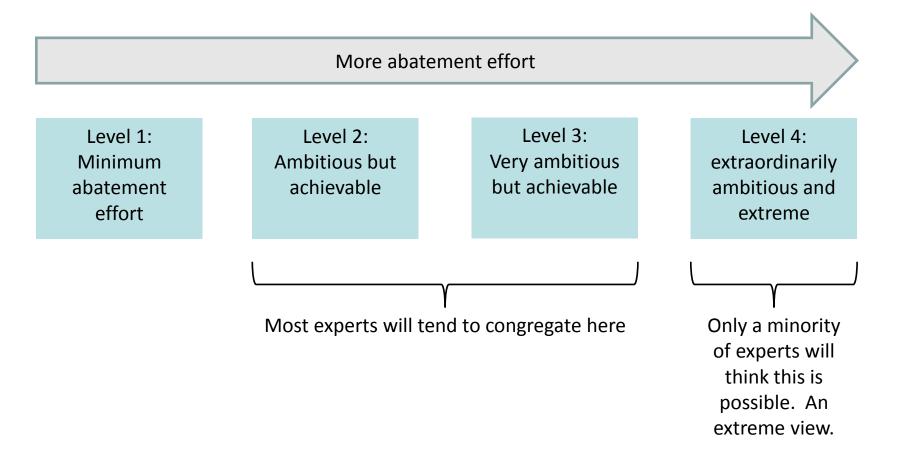
User


Questions answered

Scenario analysis tool for showing how global energy, land and food system "adds up" and showing the business opportunities that could arise from decarbonisation. e.g.

- Industry: if big shift to recycling and more durable products, what does this mean for industrial production?
- Transport: what's the size of the potential future market for EVs (would there be enough rare earth materials to manufacture vehicle batteries)?
- Food: what's the global availability of land for food vs bioenergy, and what might this mean for production methods?

To make the case for tackling climate change by:

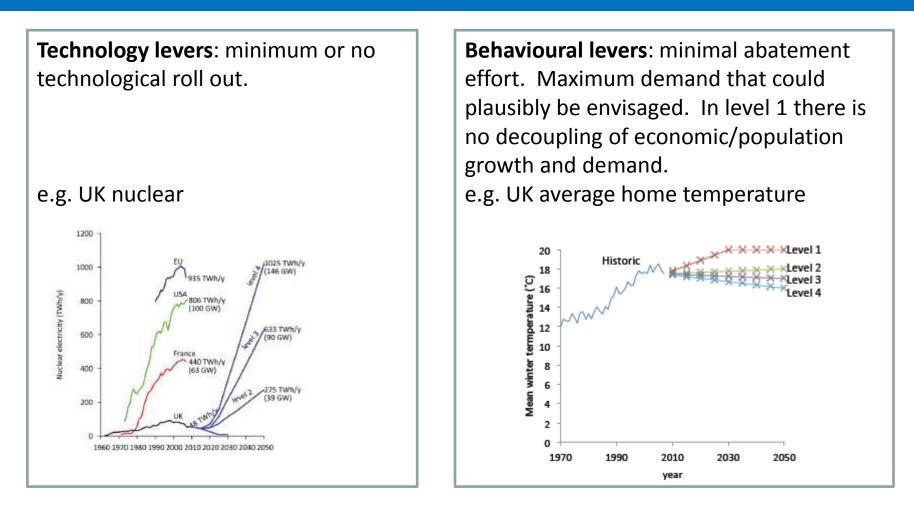

- Showing detrimental impacts
- Illustrating aspirational low emission pathways

It will not be designed to answer questions such as:

- **Price impacts**: what is the impact of a global carbon tax of $\frac{x}{tCO_2}$?
- **Burden sharing**: if the US did X and China did Y, how would other countries respond and what would happen to global emissions and climate impacts?

But it will be able to illustrate pathways from other models exploring these questions.

The level 1-4 range is simply a synthesis of what a wide range of credible experts believe could be possible by 2050.

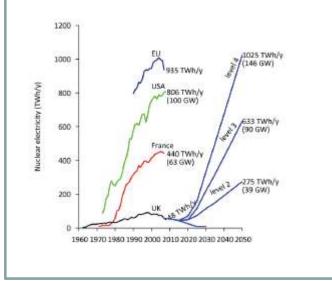


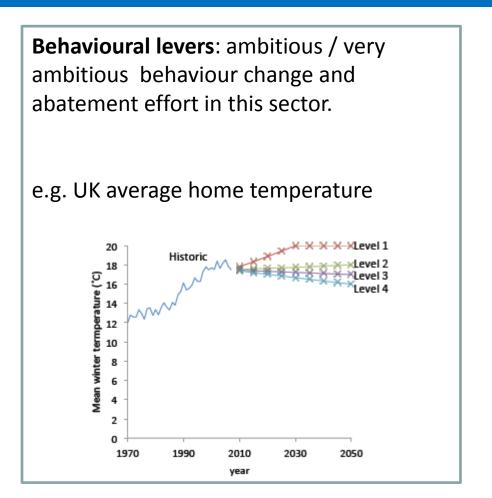
Demo of prototype Global Calculator tool

The Global Calculator Prototion 1.016 - Dashboard CASHEGARD CUMATE SCIENCE & IMPACTS | ELECTRICITY BALANCING | TRANSPORT | BUILDINGS | MATERIALS | FOOD / BIOENERGY | ENERGY FLOWS | RESOURCES | LAND | LIFESTYLE | KEY STATISTICS Energy supply Energy demand **Global GHG emissions profile** Mean terrip. Increase 2,000 2,900 8631 GT C02 2100 1,890 at 10.000 1,750 maximum by 2120 1,600 stated with court 1.500 1,400 Lucification in which the 1,250 3120 CT CD2 21,000 T 1,000 12125 cumulative CO2 800 100 emissions by 2100. з associated with \$0% 600 of the climate 500 metalls for kinisters **3C temperature** 1990 2010 2050 Select the arribition level for reaching a nustainable gathway towards 2050 TRANSPORT COLUMN STREET CAND FOOD EIGHNERCY LEQUELTRATION Passenger dittance Solid/liquid:gas & biomass core. Galones consurced and and and Building size (m2) Type of dies CIM Facul fuel electricity generation Heating / cooling per mit 200 Freight demand - 000 000 000 Passenger & freight mode & occupancy Crop yields Heating / calling technology Passenger & freight efficiency Nuclear power stations Lifernick yields Lighting, applances & cooking demand Wind power and an and Distrification of passenger & height - IIII IIII IIII Biverenny yields Fill Bill Lighting, appliances & cooking efficiency 🎫 📰 📰 Hydroelectric power Scenergy production Energy intensity of ann-read, buildings Martin power III III Contervation areas **MATTERN** Demand for products Solar power Land multiuse and synergies FORULATION & URBANISATION Product manufacturing efficiency Cepthermal poper 20 20 20 20 Speculative CHC removal technologies Cishal population Carbon Intensity of production Stimage, demand shifting & intercon. Waste production and collection Urbanisation & econs to electricity CSS in industry - 700 000 000 ACTION POST 2010 Emissions trajectory IIII Er all even for Population & Unterlisation 💌 Materials 💌 Transport 🕷 Buildings 💌 Population 🖉 Population & Unterlisation 🐨 Speculation GHO removal 💌 Click here to obtain a Global Calculator URL with your current lever settings that you can bookmark

http://gcp.pik-potsdam.de/glob-calc-v3.html Username: gcp Password: ObErOn7! (please note the confidentiality agreement)

Global **C**alculator

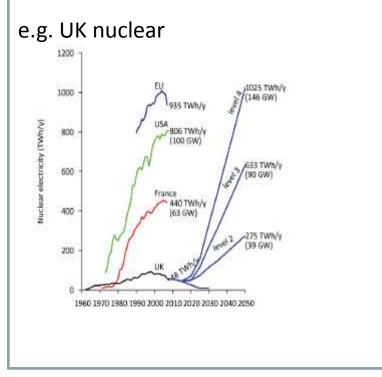

Level 1 should not be interpreted as BAU. It may actually be more pessimistic.


Level 2 is described by most experts as ambitious but achievable; and level 3 is described as very ambitious but achievable

Global **C**alculator

Technology levers: technological roll out at ambitious / very ambitious rates.

e.g. UK nuclear

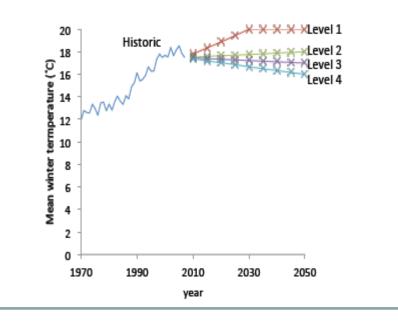


Level 4 for technology levers reflects the maximum theoretical potential of a technology

Global **C**alculator

Technology levers: the maximum technology roll out that is technically possible by 2050, not constrained by cost.

Level 4 is:


- Extraordinarily ambitious and extreme – an "Apollo" level of effort
- The maximum technology roll out as suggested by the most ambitious expert
- Only constrained by:
 - Build/installation rate: e.g. roll out of nuclear will be constrained by the fastest it is possible to build plants (determined by a "top runner" build rate)
 - Natural resources: e.g. roll out of wind and solar will be constrained by the availability of windy/sunny locations.

Level 4 for behavioural levers reflects the maximum behaviour change that could be argued to be socially acceptable

Global **C**alculator

Behavioural levers: the greatest behaviour change that could be argued to be socially acceptable.

e.g. UK average home temperature

Level 4 is:

- Extraordinarily ambitious and extreme. Revolution in behaviour.
 - Only constrained by what could be considered socially acceptable and consistent with economic and population growth.
 - e.g. Demand for manufactured goods level 4 could be consistent with a world in which users are buying fewer goods because good are more durable and there is more recycling.

Level 4 is <u>not</u> economic apocalypse! The economy could still grow, consistent with projections.

Benefits of defining level 4 as extreme effort:

Identify the whole solution space. Many users find playing with level 4s to be a useful way of contextualising the issues. Even if they don't seriously advocate that level of action, they find it helpful to have an awareness of what the extreme looks like.

Common platform for debate. Level 1 to 4 is inclusive of all credible experts views, so they can all use the tool as a common platform for debating their proposals. Helpful for securing buy in from experts.

Future is uncertain! Much could change over the next 35 years, e.g. technology breakthroughs, cost reductions, behaviour change. Defining the range too narrowly risks underestimating future uncertainty.

Current / planned policy is not reflected in the levels 1-4... Level 1 is not the "business as usual" scenario because it does not attempt to take account of existing/planned policy. Level 1 is actually likely to be higher emissions than business as usual.

... instead, it's reflected in example pathways e.g. The IEA 4DS is all current and planned policy.

You can help in the following ways:

by end April /early May	 Send evidence on specific issues raised in the April workshops
After release in July	 Send the link to 5 people in your organisation develop an example pathway we can include in the November/December version of the tool Put link to tool on your web sites Use and adapt the tool for your own purposes (it's an Open Government licence) Help with translation for the December re-release. Become a Global Calculator Ambassador [see next slide]"

Global Calculator Ambassadors will be:

- Given access to an early release of the tool (e.g. 2-7 days early, depending on our project timings nearer the time)
- Encouraged to present the Global Calculator at any conferences/event, etc they attend using a standard slide pack prepared by our team.

Would you like to join the email distribution list to be a Global Calculator Ambassador? If so, please contact Kerenza.McFaul@decc.gsi.gov.uk

There are various opportunities for outreach during July to January 2015

Outreach opportunities

Global **C**alculator

July		August	September	October	November	December	January
CfE Call for Evidence (6 weeks)		Update model to respond to comments received.		Pathway authors update their pathways	Re- release and launch event		
			Calcu	y authors and Global lator Ambassadors eive early release			
		I I c team : encourage les to Call for e.					
	Glob Ca	I I c team : encourage/su	I Ipport businesses/NGO	s to create example p	athways		
		I Calculator Ambassado vorkshops/1:1s to enco	rs: purage feedback, exam	ple pathways and/or u	se of tool.	1	
	Utilise r	networks: IEA, Climate	-KIC, FCO networks, Co	untry Calculator netwo	orks, etc.		
		N	ew Climate Economy rep published UN Climate Summit (New York)			UNFCCC COP20 (Peru)	World Economic Forum (Davos)

Agenda

Global **C**alculator

Introduction to the global calculator

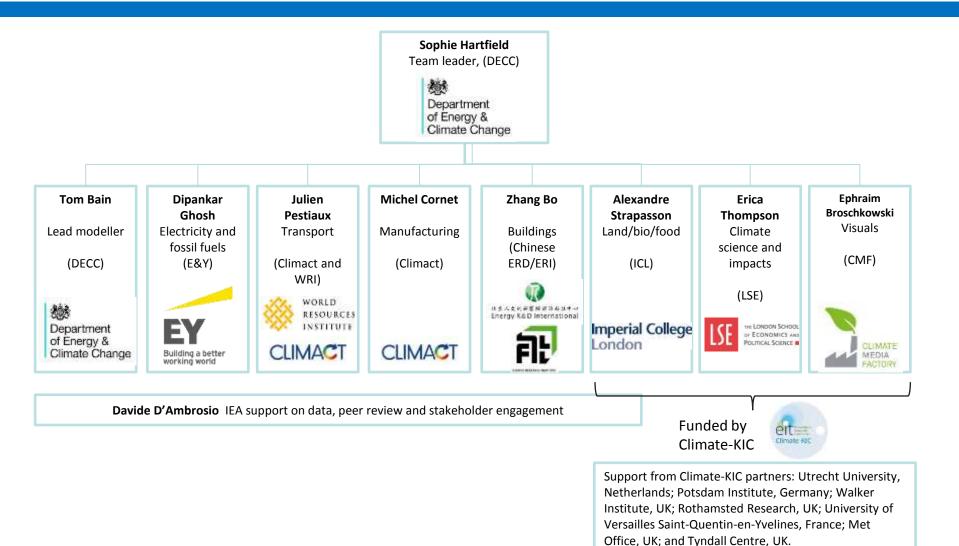
Background

Global Calculator

Team & Model structure

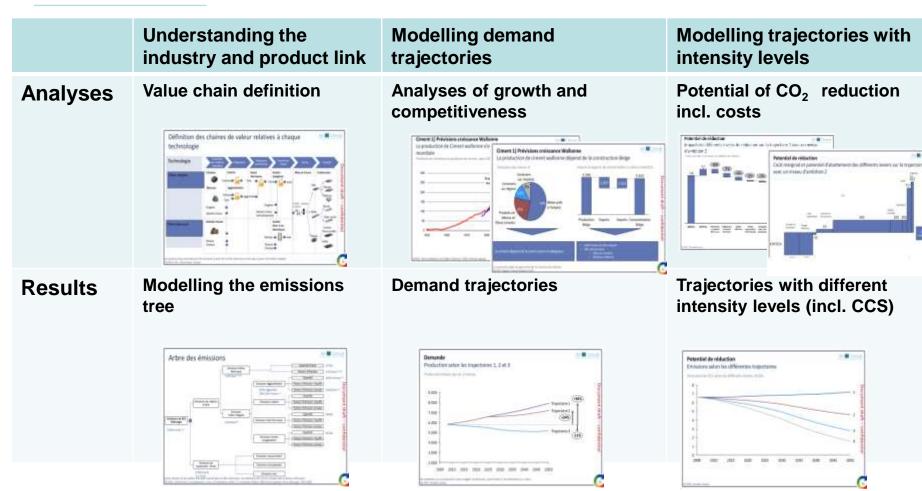
Expert & Literature review

Warning messages


2011 overview of energy and material demand

2050 growth of materials and emissions

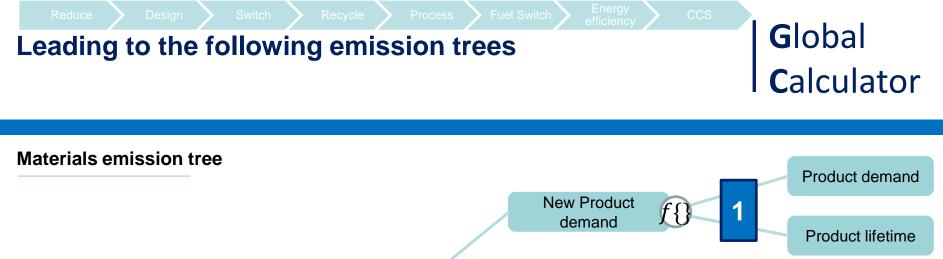
Aluminium assumptions summary

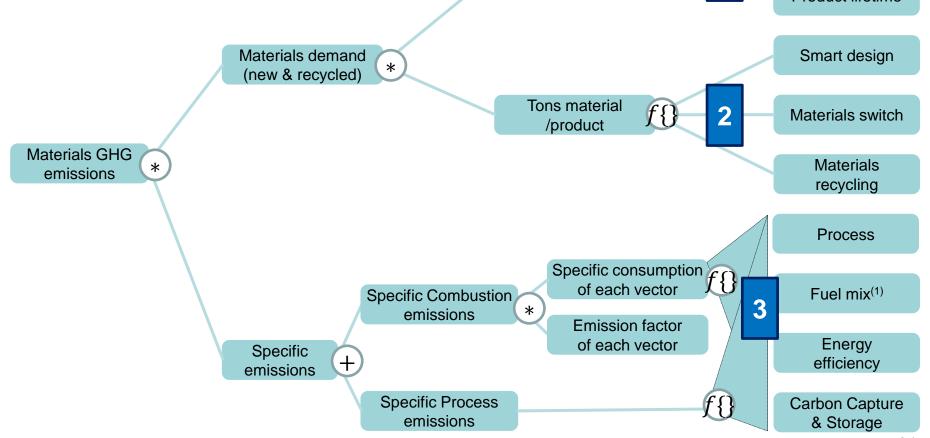

Team structure

Global **C**alculator

31

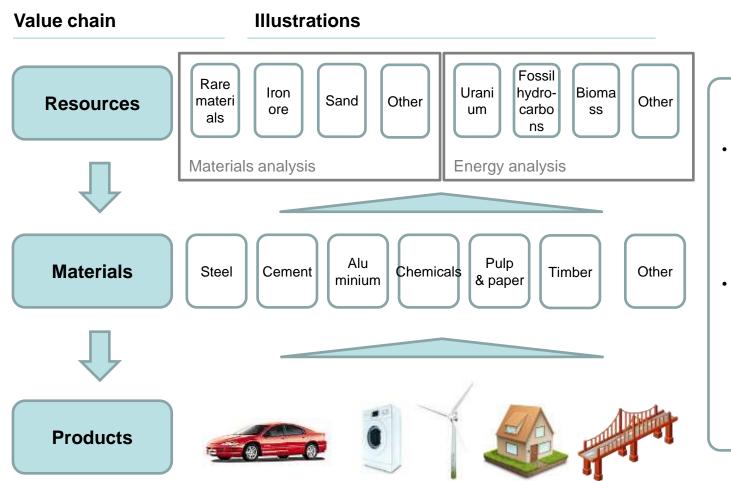
Methodology


There are 3 main lever groups, split into 8 lever families which contain levers per product and material type



	Lever groups		Lever families		Lever descriptions			
1	Product demand	1.	Reduce demand ⁽¹⁾ & increase lifetime ⁽²⁾	•	End consumer demand of products Solutions for sharing the product amongst different users			
2	Material demand per product	2. 3. 4.	Smart design Materials switch Materials recycling	•	Amount & type of materials required to supply the products (includes new product types and substitution materials) Materials recycling potential			
3	Carbon intensity of material production	5. 6. 7. 8.	Process change Fuel switch Energy efficiency Carbon capture and storage	•	Production CO ₂ intensity of various improvements levers in each industry (~60improvements types)			

NOTES: (1) These levers don't apply in the materials analysis when the product demand is defined by the other sectors


(2) For consumer goods: cars & household goods

NOTE: (1) The fuel mix does not influence the specific process emissions

For manufacturing, the analysis starts from the demand for products and derives material production and resource use (1/2)

Taking advantage of the global scope, the materials analysis can include embedded emissions and resources impact

Global

Calculator

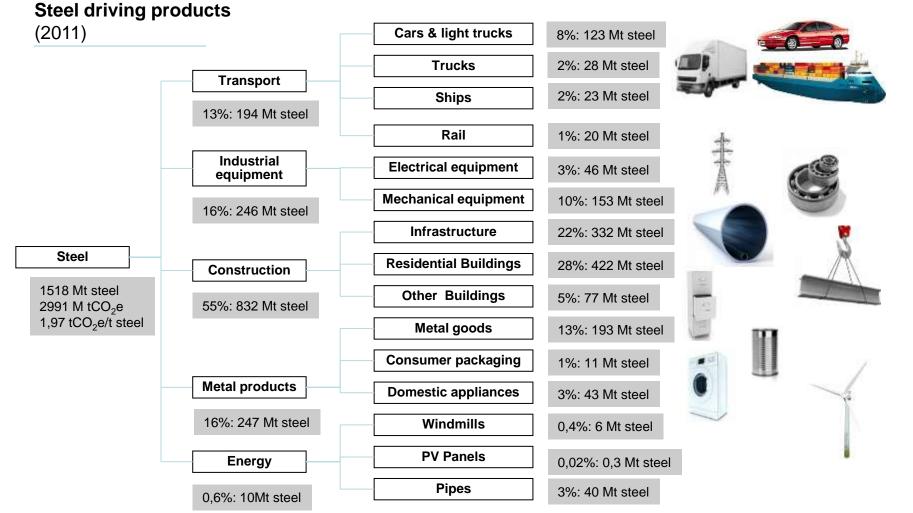
 Part of the product demand is a model input, another is generated by the requirements of other sectors The analysis starts from the demand for products and derives material production and resource use (2/2)

Selection of products and materials and resources (excluding energy resources)

Sector	Products	Materials	Resources
	Nuclear & Fossil plants	➔ Infrastructures	/
	Wind turbines	Steel, Aluminium	Iron ore, bauxite,
Energy	PV	Chemicals, Steel & Aluminium	Hydrocarbons, rare metals
	Transmission, distribution networks	Steel, Aluminium	Iron ore, bauxite
	Other	/	/
	Infrastructure, Buildings	Steel, Aluminium, cement, timber	Iron ore, bauxite, biomass, clinker substitutes
Infrastructu	Industrial & mechanical equipment	Steel, Aluminium	Iron ore, bauxite
res	Roads	Cement, Asphalt	clinker substitutes
	Rail	➔ Infrastructures	/
	CCS pipes	Steel	Iron ore
	Other	/	/
	Vehicles (cars, light trucks, truck, ships)	Steel, Aluminium, chemicals	Iron ore, bauxite, Lithium, fossil fuels
Consumer goods	Metal goods, consumer packaging, domestic appliances, clothing	Chemicals, steel, aluminium	Iron ore, bauxite, metals, hydrocarbons
	Other	/	1
Other	Other	/	/

Comments

 Only significant relationships will be kept so to reduce complexity and feedback loops, other are skipped


Global

Calculator

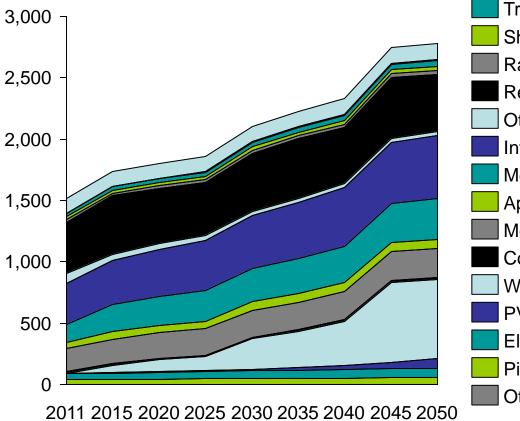
- e.g. if wind turbines represent only 5% of the aluminium demand, asphalt is less energy intensive
- E.g. asphalt is not a major source of GHG emissions, excluding aggregates, it overlaps with cement and plastics

ReduceDesignSwitchRecycleProcessFuel SwitchEnergy
efficiencyCCIllustration of the product to materials link for steel

Global **C**alculator

NOTES: (1)There are other products, these have been diluted amongst the existing categories (2) Half the "Construction" steel is used for rebar with cement

SOURCES: With both eyes open, Copyright 2012 UIT Cambridge Ltd, adapted by Climact to 2011 figures


In the model, material demand is driven by product demand

Global **C**alculator

Steel demand evolution

Reduce

Cars & light truck Cars & light truck EV Trucks Ships Rail **Residential Buildings Other Buildings** Infrastructure Mechanical equipments Appliance Metal goods Consumer packaging Windmills **PV** panels **Electrical Equipment Pipes Other Steel**

Steel example in a pathway with ambition 3

- Product demand determines material demand
- How should product demand be determined?

Most product demand is defined by each sector's activity, Some products are driven by the "Product demand" lever,

Reduce

Key drivers of demand to be challenged

Global

Calculator

Sector	Products	Model Technologies (grouped)	Demand driven by	Rationale
Transport	Car & Light trucks	Bike, Cars, Motorbike	By transport sector	1
	Trucks	Trucks, Bus		1
	Rail	Trains		/
	Airplanes	Planes		1
	Trucks & ships	Trucks, Ships		1
	Infrastructure ⁽¹⁾	Roads		1
	Batteries	Electric vehicles		1
Buildings	Buildings	Residential/Non-residential	By buildings sector	1
	Infrastructure ⁽¹⁾	Bridges, Roads, Airports	By transport sector	to avoid iteration loop and have it defined in one place
	Mechanical equipment's	Cooker, HVAC	By Buildings sector	/
	Appliances	Various appliances, stoves, lighting		/
Consumer	Paper	Print, graphic	By "Product demand " lever	/
goods	Metal goods	Consumer products	By "Product demand " lever	1
	Consumer packaging	Consumer packaging	By "Product demand " lever	1
	Fertilizers	Ammonia production	By Population	By Land & food sector in v2
Energy/	Wind	Onshore, offshore	By energy sector	/
Electricity	PV	Solar PV		/
	Electrical Equipements	Transformers	Skipped	to avoid iteration loop
	Electrical cables	Transmition lines		
	Pipes			Not modelled in v1
	Infrastructure ⁽¹⁾	Energy Plants& network	By transport sector	to avoid iteration loop and have it defined in one place
Industry	Infrastructure ⁽¹⁾	Plants of each kind of material	By transport sector	to avoid iteration loop and have it defined in one place
	Paper	Paper	By "Product demand " lever	/

NOTE: (1) Infrastructure is present in three sectors: Energy, Industry and Transport. The allocation is as follows x,y,z. It's demand evolution is currently following the transport demand only.

Reduction potential Modelling choices on Scope

Global **C**alculator

Impact in Product life is addressed by the other sectors	 To reduce overall emissions, we must take an overall perspective including both the production and the use phase For example steels produce efficient transformers and motors enabling to reduce more CO₂ emissions than what was required during the production phase⁽¹⁾
Use of by products is accounted for in the other sectors	 The material production can result in the generation of by-products that reduce CO₂ emissions by substituting natural resources in other industries For example, blast furnace slag is used by the cement industry allowing it to reduce its CO₂ emissions significantly ⁽¹⁾

- Taking these dimensions into account typically provides a view on the material impact as a CO₂ mitigator
- Applied to steelmaking and steel use in Europe, such an approach shows that steel can save six times as much CO₂ where it is used than is emitted in production

NOTES: Global calculator assumptions

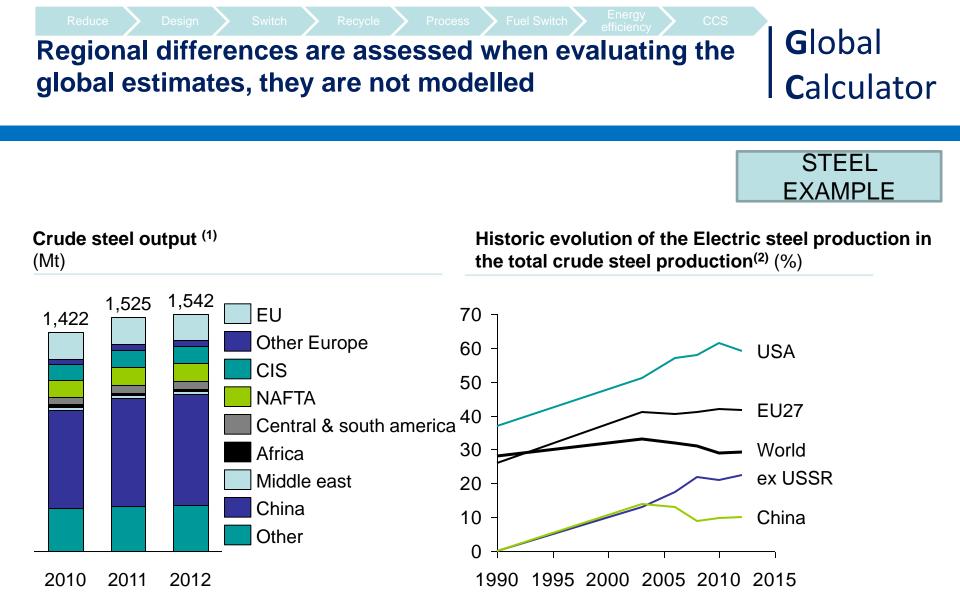
SOURCES:

(1) Worldsteel, steel's contribbution to a low carbon future

(2) Eurofer A steel Roadmap for a low carbon Europe 2050 (1013)

ReduceDesignSwitchRecycleProcessFuel SwitchEnergy
efficiencyCCSMaterial demand / product: Design, Switch & RecyclingCCSGlobalLevers are assessed in each industryCCSCCS

List of actions & levers assessed


Indust	ry groups	Design	Switch	Recycling
Steel		Product DesignHigh strength steel	 In vehicles : To aluminium & to plastics (fibres) In buildings/Infrastructure : to timber 	 Product recycling % scrap based (for each various technologies exist)
Chemi cals	All	Product design	• /	Product recyclingMaterial recycling
	High value		 Substitutes steel, aluminium & cement in vehicles & buildings/infrastructure 	Green chemistry
	Ammonia	 Fertilizers composition 	• /	
	Methanol		• /	
	Other	Green chemistry	• /	
Aluminiu	ım	Product design	In Planes: To plastic (fibres)	Product recyclingMaterial recycling
Cement		Product design	 In buildings/Infr. : To plastics & to timber 	Composed/metallurgical cement
Pulp & p	aper			More recycled paperOther cellulose sourcesBio-refineries
Timber		Product design	Switch from steel &cement	

List of actions & levers assessed

Industr	y groups	Process improvements	Alternative fuels	Efficiency	CCS
Steel		 Carbon material reduction Portion of Classic BOF/ Top gas recycling & Hisarna/ EAF DRI/ EAF scrap Smelt reduction, Hydrogen, Electrolysis 	 Coke to gas injection Coal PCI to biomass 	 Material efficiency Energy efficiency CHP 	• CCS
Chemi cals	All	Process intensificationCatalyst optimization	Oil to gas	 Clustering and sustainable integration CHP 	• CCS
	High value	 Included in energy efficiency 		Energy efficiency	• CCS
	Ammonia	 Included in energy efficiency 		Energy efficiency	• CCS
	Methanol			Energy efficiency	• CCS
	Other	 Included in energy efficiency Selective catalytic reduction 	Hydrogen production by electrolysisNatural gas or biomass	Energy efficiencySwitch Mercury to membrane	• CCS
Aluminiu	m	 Included in energy efficiency 	Gas injection	Material efficiencyEnergy efficiency	• CCS
Cement		Dry process	 Coal & oil to waste & biomass 	Energy efficiencyCHP /heat recovery	• CCS
Pulp & pa	aper	Black liquor gasificationDrying innovation	Coal & oil to gasCoal & oil to biomass	Energy efficiencyCHP	• CCS
Timber		• /	• /	• /	• /

Global

Calculator

Introduction to the global calculator

Background

Global Calculator

Team & Model structure

Expert & Literature review

Warning messages

2011 overview of energy and material demand

2050 growth of materials and emissions

Aluminium assumptions summary

Main sources used for the steel analysis

Organisation	Source
World Steel Association	 World Steel in Figures 2013 Steel Statistical year book 2013 Sustainable steel: Policy and indicators 2013 Steel's Contribution to a Low Carbon Future The three Rs of sustainable steel (Reduce, Reuse, Recycle), 2010
Eurofer	 Low Carbon Steel Roadmap 2050 (IEA involved, led by BCG and German Steel Institute)
EU JRC	 Prospective Scenarios on Energy Efficiency and CO2 Emissions in the EU Iron & Steel Industry
UN work	
ULCOS	Official website
Midrex	• MidrexStats2011-6.7.12
IEA	 2013 Key world energy statistics 2012 technology perspectives
Cambridge	With both eyes open
	 NTNU & Cambridge University (2014 04 10 International Materials Education Symposium)
US Environmental Protection Agency	 Available and emerging technologies for reducing greenhouse gas emissions from the iron and steel industry. North Carolina: US EPA., 2010
Previous consultations	• Similar roadmaps performed in Belgium, UK, Algeria, the Balkans & India

46

Main sources used for the Chemicals analysis

Organisation	Source
Cambridge	With both eyes open
IEA	 Energy Technology Perspectives 2012, Pathways to a clean energy system Chemical and Petrochemical Sector – Potential of Best Practice Technology and Other Measures for Improving Efficiency (IEA, 2009) Summary report
ICCA	 Technology Roadmap: Energy and GHG Reductions in the Chemical Industry via Catalytic Processes (IEA, ICCA, Dechema) The role of the chemical industry in achieving targets of IEA roadmaps on biofuel and bioenergy (2011)(ICCA and SRI International) Building Technology Roadmap: The Chemical Industry's Contribution to Energy and GHG Savings in Residential and Commercial Construction Buildings roadmaps (2012) (ICCA)
CEFIC	• European chemistry for growth, Unlocking a competitive, low carbon and energy efficient future (2013)
Plastics Europe	Plastics- the facts 2013
Utrecht University	 Ren, T. 2009. Petrochemicals from Oil, Natural gas, Coal and Biomass: Energy Use, Economics and Innovation. PhD
McKinsey	 McKinsey cost abatement curves v2.1 Manufacturing the future: the next era of growth and innovation (2012)
Ecofys	SERPECC studies
European Climate change Foundation	 Europe's low carbon transition: Understanding the challenges and opportunities for the chemical sector (2014)
Other	 Chemical Industry of the Future: New Process Chemistry Technology Roadmap, July 2001 Catalysis - a key technology for sustainable growth"
Previous consultations	Similar roadmaps performed in Belgium, UK, Algeria, the Balkans & India

Main sources used for the Aluminium analysis

Organisation	Source
World Aluminium	 A Review of the Global Aluminium Industry: 1972-2012 (2013) Aluminium Intensive Electric Vehicle Report (2012) Aluminium for Future Generations Sustainability Update: 2010 data (2011)
Cambridge	With both eyes open
IEA	Energy Technology Perspectives 2012, Pathways to a clean energy system
McKinsey	McKinsey cost abatement curves v2.1
Ecofys	SERPECC studies
Previous consultations	• Similar roadmaps performed in Belgium, UK, Algeria, the Balkans & India

Main sources used for the Cement analysis

Organisation	Source
Cambridge	With both eyes open
IEA	 Energy Technology Perspectives 2012, Pathways to a clean energy system ETP 2014 data
International Cement Review	 The global cement report (6th edition) Insights from the global cement report (10th edition) (2013)
IEA-WBCSD	2050 Cement Technology Roadmap (2009)
Carbon War Room	Cement Report 1 (2011)
Mineral product association	UK cement roadmap (2013)
GNR	 Global Cement Database on CO₂ and Energy Information
European Cement Research academy	Technical documentation
Cembureau	the role of cement in the 2050 low carbon economy
IEA	 GHG 2008. CO2 capture in the cement industry. Report 2008/3. Cheltenham, UK: International Energy Agency Greenhouse Gas R&D Programme
Previous consultations	• Similar roadmaps performed in Belgium, UK, Algeria, the Balkans & India

Main sources used for the Paper analysis

Organisation	Source
Cambridge	With both eyes open
IEA	Energy Technology Perspectives 2012, Pathways to a clean energy system
CEPI	 roadmap Two team project report (presents 8 breakthrough technologies)
Carbon Trust	 Carbon Trust, 2011. Industrial Energy Efficiency Accelerator - Guide to the paper sector (CTG059). London
FAO	Statistics on link between product demand and materials demand
McKinsey	McKinsey cost abatement curves v2.1
Ecofys	SERPECC studies
Previous consultations	• Similar roadmaps performed in Belgium, UK, Algeria, the Balkans & India

Main sources used for the Timber analysis

Organisation	Source	
Cambridge	With both eyes open	
IEA	 Energy Technology Perspectives 2012, Pathways to a clean energy system 	
CEI Bois	 Wood in carbon efficient constructions: Tools, methods & applications/ Lutter contre le changement climatique: utiliser le bois 	
Previous consultations	Similar roadmaps performed in Belgium, UK, Algeria, the Balkans & India	

Main sources used for the CCS specifics

Organisation	Source		
IEA	 Energy Technology Perspectives 2012, Pathways to a clean energy system IEA: Technology Roadmap: Carbon Capture and Storage (2013) IEA, UNIDO : Technology Roadmap Carbon Capture and Storage in Industrial Applications (2011) 		
Imperial Grantham	Briefing paper Carbon Capture Technology (Nov 2010)		
ZEP	Application of CCS in EU energy intensive industries		
McKinsey	McKinsey cost abatement curves v2.1		
Ecofys	SERPECC studies		
Previous consultations	Similar roadmaps performed in Belgium, UK, Algeria, the Balkans & India		

Resources availability Most referred to analysis has been taken into account to make this model

Global **C**alculator

Main sources used for the Resources specifics

Organisation	Source	
IEA	US geological survey (USGS)	
Cambridge	With both eyes open	
Bath University	Construction materials database; inventory of carbon energy. Bath database	

Agenda

Global **C**alculator

Introduction to the global calculator

Background

Global Calculator

Team & Model structure

Expert & Literature review

Warning messages

2011 overview of energy and material demand

2050 growth of materials and emissions

Aluminium assumptions summary

Global **C**alculator

Materials

Emissions	 Electricity can be a large emission component (in cases the largest for aluminium) Electricity mix is typically not so related to the national, regional or world electricity mix (typical for aluminium)
Product & material design	 Product and material design is currently not linked to demand (e.g. high strength steel to efficient vehicles)
Material switch	 Material switch is currently not linked to demand (e.g. high strength steel to efficient vehicles) You are heavily replacing some materials by others. Please note this Modelling is performed at high level Can change the properties of the products Land use allocation, e.g. lack of area for forest or bioenergy.
Fuel switch	Land use allocation, e.g. lack of area for forest or bioenergy.
Process improvements & energy efficiency	• You've chosen level 4 for steel. This is a heroic level of effort.
CCS	 You've selected CCS for your pathway but be aware that, to date, CCS has not been demonstrated at a commercial level.

Post meeting feedback on these messages is highly welcome

Energy security

- You are more than x% reliant of fossil fuels (or any other single energy supply, e.g. intermittent renewables) for your energy supply. The world could be exposed to high volatility of fossil fuel prices.
- You have selected a high output of bioenergy but very low energy demand, so there is oversupply of bioenergy.

Electricity

- You've electrified transport/heat but you have not decarbonised electricity generation so emission savings are not being realised.
- You've decarbonised electricity generation but have not electrified much heat or transport, so emission savings are not being fully realised.
- You're using GGR / CCS, but these technologies consume electricity and you have not decarbonised electricity generation, so emission savings are not being fully realised.
- You're generating a lot of electricity from renewables, but these have intermittent supply so you should use more demand shifting and storage.
- You're oversupplying electricity this is wasting electricity.

Global

Calculator

Technology development required

- You've chosen GGR this is a speculative technology.
- You've selected CCS for your pathway but be aware that, to date, CCS has not been demonstrated at a commercial level.
- You've chosen level 4 for solar/nuclear/wind/etc [any technology lever]. This is a heroic level of effort.
- Geothermal should we flag that this is a relatively unproven technology??

Cost

- You've got some stranded assets (e.g. coal electricity generation or replacing manufacturing furnaces).
- You're using a lot of oil so your oil price could be very high. (nb: Be careful not to say, "you've run out of oil.")
- Low oil price but high oil consumption.
- Nuclear costs are particularly uncertain owing to uncertainty over cost of decommissioning.

Global

Calculator

Resources (land, forest, food, etc)

- There is not enough land to meet your diet choices. Consider change in diet, yields, population.
- You have no forest/bioenergy because of your meat consumption.
- Land use allocation, e.g. lack of area for forest or bioenergy.
- Be aware you are have no forest left (if it's possible for user to do this).
- You've generated a high temperature change pathway, but you've selected level 4 crop yields.
- BECCS/biochar interaction with conventional bioenergy.
- You have selected "smart manufacturing level 4" but you do not have enough commercial forest to service this.
- You have selected "smart manufacturing level 4" which involves a high degree of substitution of timber for cement beware that this could have adverse implications for [lifespan of buildings? Energy efficiency of buildings? etc].
- Your pathway requires a lot of land for meat production so the "forest and bioenergy" lever has no impact.

Global **C**alculator

LLUSTRATIVE

Climate science warning

- Emissions peak and start to fall warning that the IPCC method may be less accurate (over estimate).
- Emissions go off the scale of IPCC SPM10 so no change in temperature assessment can be made.
- Very high change in temperature warning that climate models can't represent all feedbacks, so levels very uncertain.
- Aerosol emissions are very high/low note climate impacts (regional).
- CH4 or N2O emissions are higher/lower than the RCP range so the temperature calculation will be too low/high.
- 2050-2100 emissions pathway is ad hoc but has a big impact on the temperature calculation.

Global **C**alculator

LLUSTRATIVE

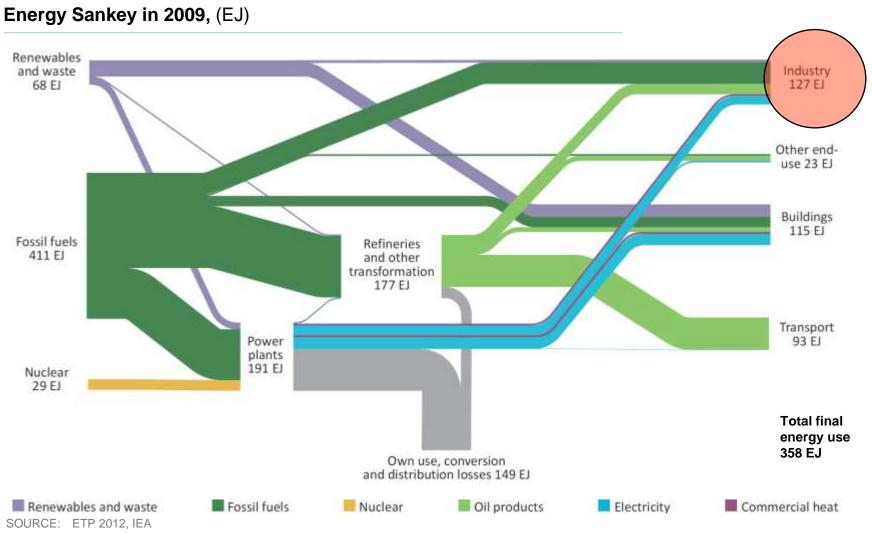
Agenda

Global **C**alculator

Introduction to the global calculator

2011 overview of energy and material demand

2011 Sector shares in energy demand

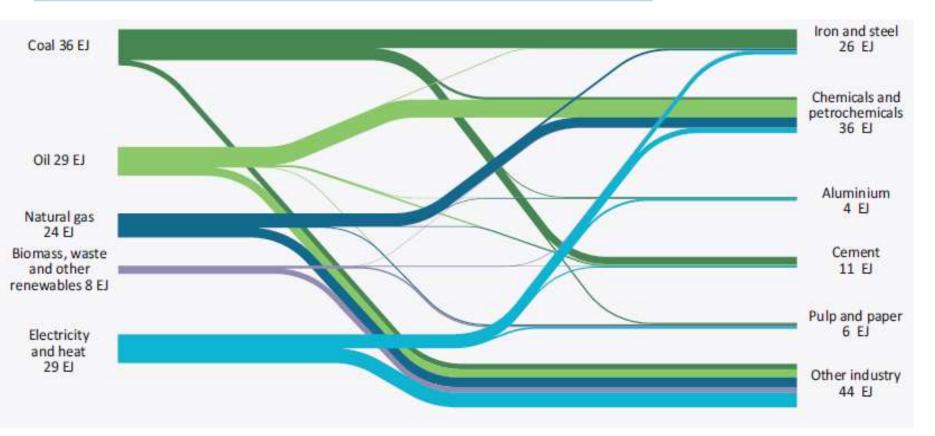

2011 Product demand & link to material demand

2050 growth of materials and emissions

Aluminium assumptions summary

Industry is ~35% of final energy use, it mainly relies on fossil fuels

Global **C**alculator



NOTES: (1) Worldsteel recently raised the steel specific energy consumptions, this is not yet reflected by this picture (2) Energy consumption is dominated by fossil fuels in all sectors

Patterns differ but most industries heavily depend on fossil fuels. Other industries are more electrified

Global **C**alculator

Energy Sankey in 2009 for the industry , (EJ)

SOURCE: ETP 2012, IEA

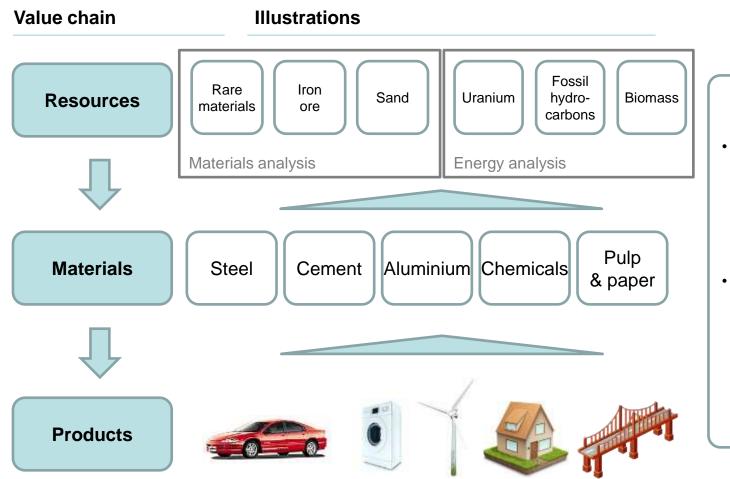
NOTES: (1) Worldsteel recently raised the steel specific energy consumptions, this is not yet taken into account in this picture (2) Energy consumption is dominated by fossil fuels in all sectors

Agenda

Global **C**alculator

Introduction to the global calculator

```
2011 overview of energy and material demand
```

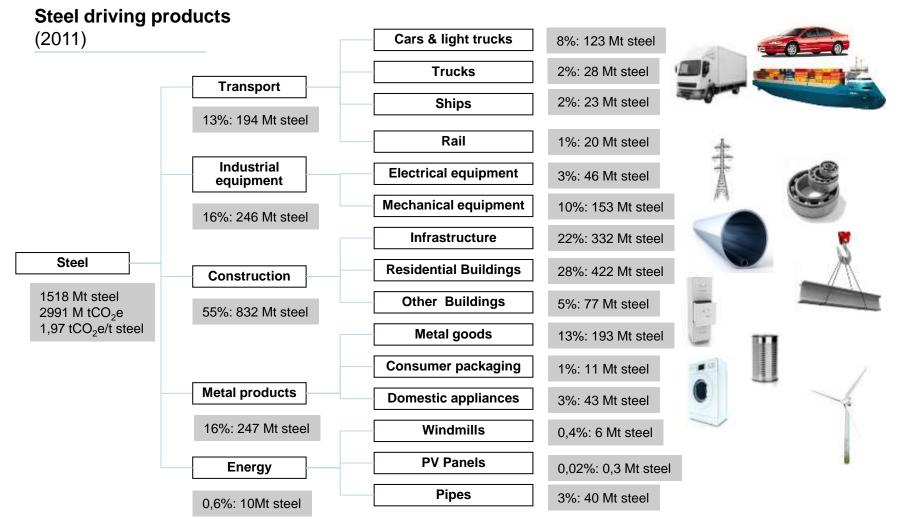

2011 Sector shares in energy demand

2011 Product demand & link to material demand

2050 growth of materials and emissions

Aluminium assumptions summary

PART HIDDEN IN PREREAD **REMINDER :** For manufacturing, the analysis starts from the demand for products and derives material production and resource use


Taking advantage of the global scope, the materials analysis can include embedded emissions and resources impact

Global Calculator

Part of the product demand is a model input, another is generated by the requirements of other sectors

Iron & steel Demand driving products

NOTES: (1)There are other products, these have been diluted amongst the existing categories (2) Half the "Construction" steel is used for rebar with cement

SOURCES: With both eyes open, Copyright 2012 UIT Cambridge Ltd, adapted by Climact to 2011 figures

Iron & Steel Materials demand is driven by the product demand

Technolog Products	gies &	Amounts (units, 2011)	(t steel/product)	Annual Steel production (M tons, 2011) ⁽²⁾
	Cars & light truck	113 (M Vehicles)	1100 kg/vehicle	123
	Trucks	5,7 (M Vehicles)	4900 kg/vehicle	28
Transport	Ships	1 (k units)	20 000	23
	Rail	5 (k units)	4000	20
	Buildings Residential	3 930 (km ^{2 (4)})	107 kg/m² ⁽¹⁾	422
	Buildings Others	830 (km² ⁽⁴⁾)	93 kg/m ^{2 (1)}	77
Buildings	Infrastructure	1750 (km² ⁽⁴⁾)	187 kg/m ²	332
	Mechanical equipment	160 (M tons)	0,97	153
	Appliance	253 (M tons)	0,17	43
Consumer	Metal goods	257 (M tons)	0,75	193
goods	Consumer packaging	530 (M tons)	0,02kg/kg packaging	11
	Windmills	17,500 2MW turbines	350 tons/2MW turbine ⁽³⁾	6,1
Energy	PV panels	160 M m ²	2kg /m²	0,320
	Electrical equipment	61,1 (M tons)	0,75	46
	CCS + oil pipes	100 000 km	0,4 ton/m	40
Other	Other Steel	~0M (tons)	1	~0
		Model demand		

drivers

NOTE: (2) Linking product to material demand for a same year is a modelling simplification; in reality, the material production can happen several years before the product delivery

(4) Of ground surface

SOURCE: (1) Muiris Moynihan thesis obtains 20kg/m² for residential buildings and 100 kg/m² for commercial (2) With both eyes open (3) Worldsteel Wind energy case study

Total 1518 Mton (100%)

Chemicals Materials demand is driven by the product demand

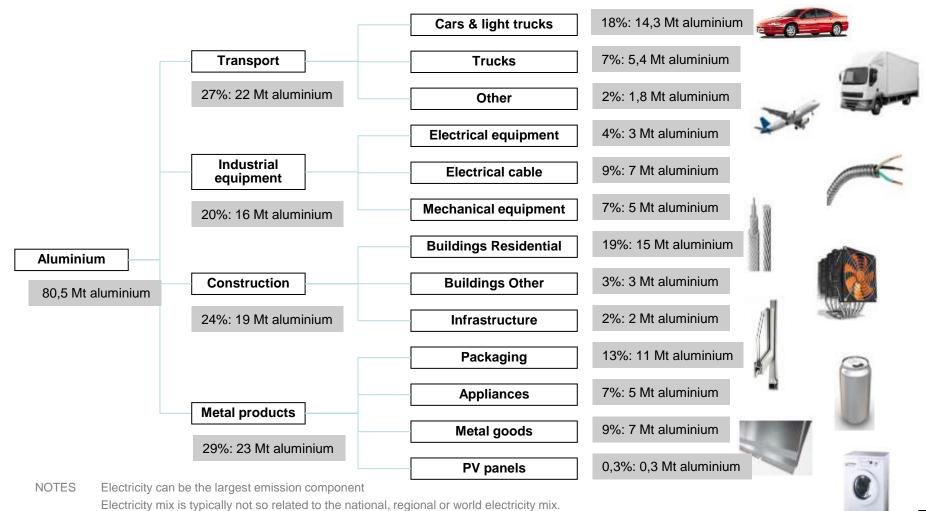
Products		Amounts (units, 2011)	Intens (tons/p	sity ′product/	/year)		X	nemicals I tons, 20		
			HVC	Ammo nia	Metha nol	Others	HVC	Ammo nia	Metha nol	Others
Transport	Cars & light trucks	113 (M Vehicles)	0,12	-	0,02	0,07	14	-	3	8
	Trucks	5,7 (M Vehicles)	0,4		0,07	0,24	2		0,4	1
	Ships	1 (k units)	-	-	-	-	-	-	-	-
	Batteries (not modelled in v1)	-	-	-	-	-	-	-	-	-
Buildings	Buildings residential	3930 (km ^{2 (4)})	0,014	-	0,002	0,009	54	-	10	35
	Buildings Others	830 (km² ⁽⁴⁾)	0,012	-	0,002	0,008	10	-	2	6,5
	Appliances	250 (Mt)	0,438	-	0,08	0,29	111	-	20	73
Consumer	Packaging	530 (Mt)	0,24	-	0,04	0,16	128	-	23	84
goods	3D Printing (not modelled in v1)	-	-	-	-	-	-	-	-	-
	Population (Fertilizers)	7,0 Bln people	•	23 kg/per son	-	-	-	164	-	-
Energy	Windmill (blades in carbon fibre)	17,600 2MW turbines	30 tons	-	-	-	0,5	-	-	-
	PV panels	160 M m²	5kg /m²	-	-	-	0,7	-	•	-
Total	Total	1	1	1	1	1	320	164	58	208
		Model demand					Legend	d		

J-1.4

Representative Products

Niche product (for the analysis)

NOTES: (1) High Value chemicals typically include Ethylene, Propylene, BTX aromatics(benzene, toluene and mixed xylenes)


(2) Linking product to material demand for a same year is a modelling simplification; in reality, the material production can happen several years before the product delivery

drivers

(4) Of around surface

Aluminium Demand driving products

SOURCE: With both eyes open, Copyright 2012 UIT Cambridge Ltd.

In recent years, newer plants tended to rely on more coal based electricity

Aluminium Materials demand is driven by the product demand

Technologies & Products		Amounts (units, 2011)	Intensity (tons/ product)	Aluminium production (M tons) ⁽²⁾
	Cars & light truck	113 (M vehicles)	0,13 tons/vehicles	14
Trananart	Trucks	5,7 (M vehicles)	0,94 ton/vehicle	5
Transport	Ships	1 (k units)	0 tons/unit	0
	Airplanes	35 000 (units)	500 tons/unit	2
	Buildings residential	3930 (km ^{2 (4)})	4,4 kg/m ^{2 (1)}	15
	Buildings others	830 (km² ⁽⁴⁾)	3,8 kg/m ^{2 (1)}	3
Buildingo	Infrastructure	1750 (km ^{2 (4)})	1,2 kg/m ^{2 (1)}	2
Buildings	Mechanical Equipment	160 (M tons)	34kg/ton eqpt	5
	Appliance	253 (M tons)	21 kg/ton appliance	5
•	Metal goods	257 (M tons)	0,3 tons/ton goods	7
Consumer goods	Consumer packaging	530 (M tons)	0,02 tons/ton packaging	11
	PV panels	160 M m ²	2kg /m²	0,31
Energy	Electrical Equipment	61,4 (M tons)	0,03 tons/ton eqpt	3
	Electrical cables	24 (M km)	0,3 tons/km	7
Other	Other Aluminium	0 (M tons)	1 ton/ton product	0

Model demand drivers

Total 80,5 Mton (100%)

SOURCE: (1) Model defined, with both eyes open provides 5kg/m²

(2) With both eyes open base, adapted to IEA figures & new products

(4) Of ground surface

Cement Materials demand is driven by the product demand

Technologies & Products		Amounts (units, 2011)	(tons/ product) Cement production (G tons, 2011 ⁽²⁾)	
	Residential Buildings	3930 million m ^{2 (4)}	305 kg cement per m ² of buildings ⁽¹⁾	1,200 Gton (33%)
Buildings	Other Buildings	830 million m ^{2 (4)}	745 kg cement per m ² of buildings ⁽¹⁾	618 Gton (17%)
	Infrastructure	1750 million m2 ⁽⁴⁾	1023 rest kg cement per m ² of buildings ⁽¹⁾	1,818 Gton (50%)
		Model demand drivers		Total 3,635 Gton (100%)

NOTE: (1) With both eyes open assumes ~60 kg per floor. The model is working with ground surface so including several floor levels. Assuming 8 tons of cement per ton of concrete and a concrete density of 2200kg/m3, one can assess the width of concrete in the buildings. 500kg/m² is close to 2 m depth per square meter

Furthermore, residential buildings typically have half as much steel per concrete, than other buildings (commercial/industrial).

- (2) Linking product to material demand for a same year is a modelling simplification; in reality, the material production can happen several years before the product delivery
- (4) Of ground surface

SOURCE: (1) Model, matching buildings estimate to cement and steel demand

Paper Materials demand is driven by the product demand

Technologies & Products		Amounts (units, 2011)	Intensity (tons/ product)	Paper production (M tons) ^(1,2)
	Printing & graphic	263 (M tons)	1	263
Consumer goods	Packaging	532 (M tons)	0,517 t paper/ton packaging	275
	Other (e.g. hygiene)	73 (M tons)	1	73
		Model demand drivers		Total 611 Mton (100%)

Timber Materials demand is driven by the product demand

Technologies & Products		Amounts (units) (units, 2011)	Intensity (tons/ product)	Timber production (M tons) ⁽²⁾
Buildings	Buildings residential	3930 (km² ⁽⁴⁾)	0,12	479
Dunungs	Buildings Others	830 (km² ⁽⁴⁾)	0,11	87
Consumer goods	Other timber (incl. Furniture)	243 (tons)	1	243
		Model demand drivers		Total 809 Mton (100%)

NOTES: (2) Linking product to material demand for a same year is a modelling simplification; in reality, the material production can happen several years before the product delivery

(4) Of ground surface

SOURCE: (1) Global Calculator

Agenda

Global **C**alculator

Introduction to the global calculator

2011 overview of energy and material demand

2050 growth of materials and emissions

Materials growth

- Growth depending on ambition level
- Discussion on Material switch

Resulting GHG emissions

- Resulting emissions depending on ambition level
- Discussion on ambition levels across sectors
- Discussion on CCS

Aluminium assumptions summary

Agenda

Global **C**alculator

Introduction to the global calculator

2011 overview of energy and material demand

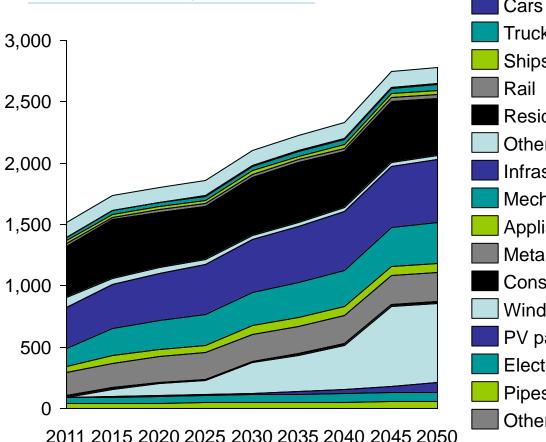
2050 growth of materials and emissions

Materials growth

- Growth depending on ambition level
- Discussion on Material switch

Resulting GHG emissions

- Resulting emissions depending on ambition level
- Discussion on ambition levels across sectors
- Discussion on CCS


Aluminium assumptions summary

REMINDER: In the model, material demand is driven by product demand

Global **C**alculator

Steel demand evolution (Mtons, before design & switch)

Reduce

Steel example in a pathway with ambition 3

- Product demand determines material demand
- How should product demand be determined?

REMINDER: Most product demand is defined by sector activity, Some products are driven by the "Product demand" lever,

Reduce

Key drivers of demand to be challenged

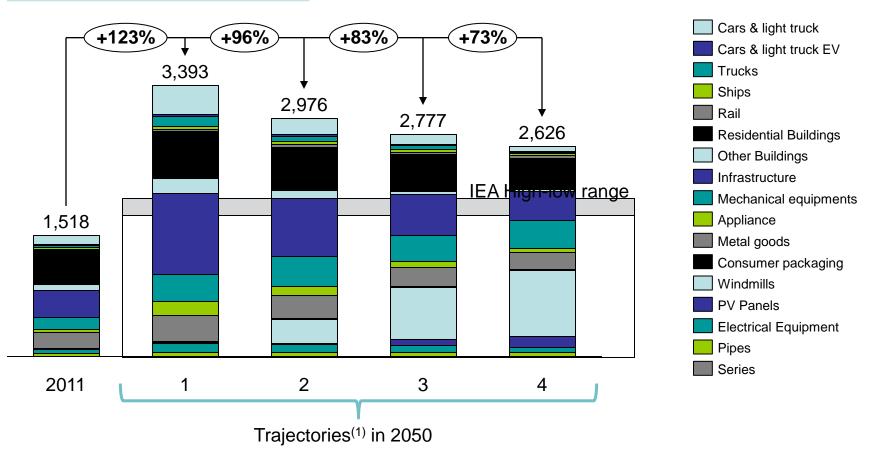
Global

Calculator

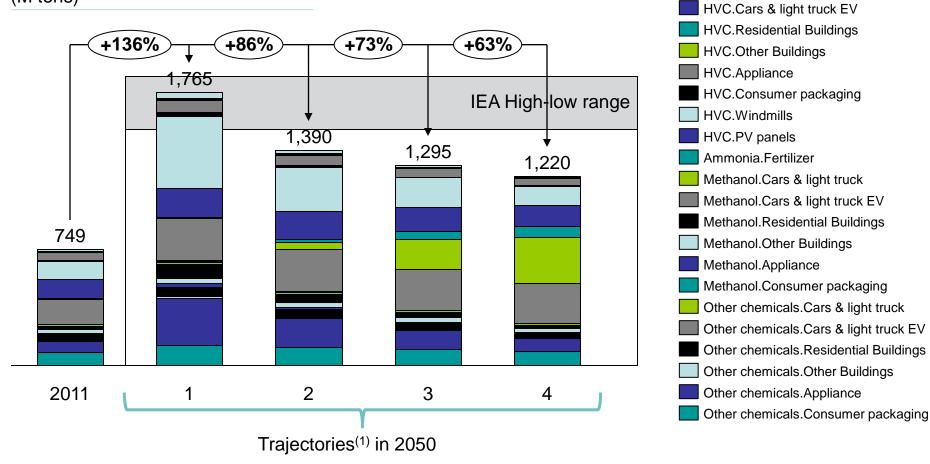
Group	Products	Model Technologies (grouped)	Demand driven by	Rationale
Transport	Car & Light trucks	Bike, Cars, Motorbike	By transport sector	1
	Trucks	Trucks, Bus		1
	Rail	Trains		1
	Airplanes	Planes		/
	Trucks & ships	Trucks, Ships		/
	Infrastructure (1)	Roads		1
	Batteries	Electric vehicles		/
Buildings	Buildings	Residential/Non-residential	By buildings sector	1
	Infrastructure ⁽¹⁾	Bridges, Roads, Airports	By transport sector	to avoid iteration loop and have it defined in one place
	Mechanical equipment's	Cooker, HVAC	By Buildings sector	/
	Appliances	Various appliances, stoves, lighting		1
Consumer	Paper	Print, graphic	By "Product demand " lever	1
goods	Metal goods	Consumer products	By "Product demand " lever	1
	Consumer packaging	Consumer packaging	By "Product demand " lever	1
	Fertilizers	Ammonia production	By Population	By Land & food sector in v2
Energy/	Wind	Onshore, offshore	By energy sector	1
Electricity	PV	Solar PV		/
	Electrical Equipements	Transformers	Skipped	to avoid iteration loop
	Electrical cables	Transmition lines		
	Pipes			Not modelled in v1
	Infrastructure ⁽¹⁾	Energy Plants& network	By transport sector	to avoid iteration loop and have it defined in one place
Industry	Infrastructure ⁽¹⁾	Plants of each kind of material	By transport sector	to avoid iteration loop and have it defined in one place
	Paper	Paper	By "Product demand " lever	1

NOTE: (1) Infrastructure is present in three sectors: Energy, Industry and Transport. The allocation is as follows x,y,z. It's demand evolution is currently following the transport demand only.

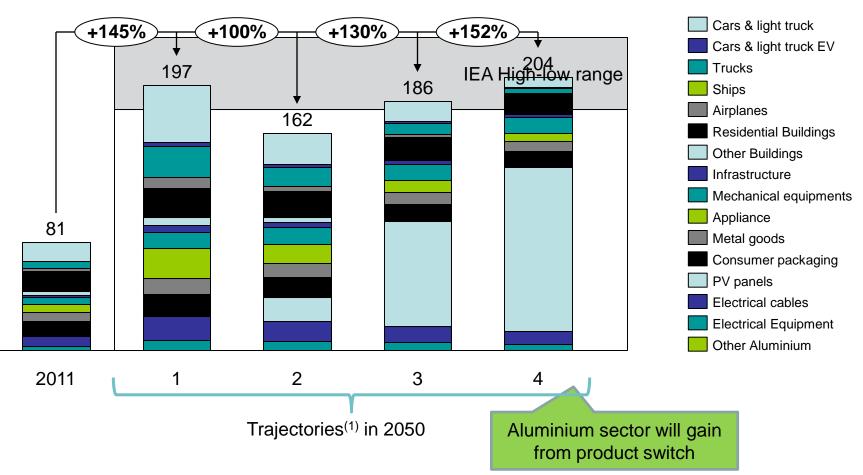
Global **C**alculator

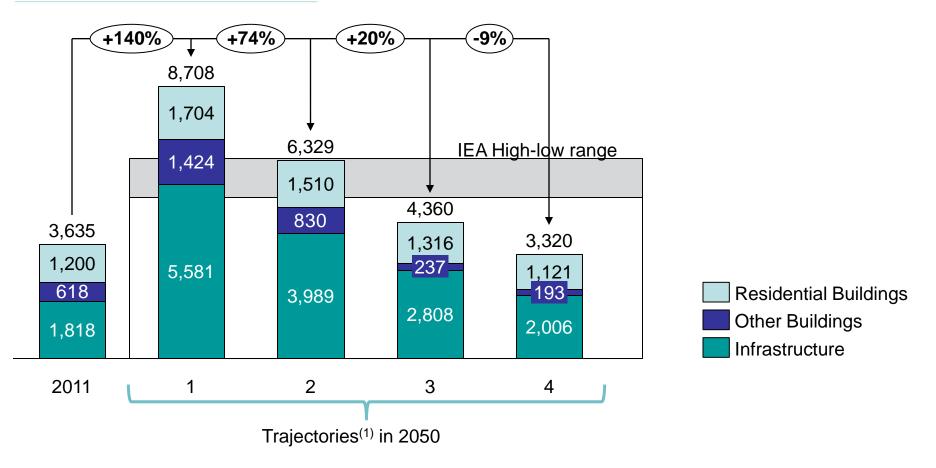

Group	Product	2011 demand (units)		2050 demand per ambit i (% evolution vs 2011)			ition ⁽¹⁾	
	Cars & light truck	111,3	Million units		300%			
	Cars & light truck EV	1,5	Million units				1,331%	
	Trucks	5,7	Million units			439%		
Transport	Ships	1	K units		184%			
	Rail	5	K units		101%			
	Airplanes	35	K units			437%		
	Batteries	/	Million units		137%			
	Residential Buildings	3932	Million m2		141%			
	Other Buildings	830	Million m2		230%			
Buildings	Infrastructure	1750	Million m2		307%			
	Mechanical equipment	160	Million tons		219%			
	Appliance	43	Million tons			421%		
	Print & Graphic Paper	253	Million tons		152%			
Consumer goods	Metal goods	257	Million tons		165%			
Poorts	Consumer packaging	530	Million tons		152%			
Food	Fertilizer	164	Million tons		169%			
	Windmills	17600	Units				 13,6	626%
	PV panels	160	Million m2					/ 39,
Energy	Electrical Equipment	61	Million tons		239%			
	Electrical cables	24	Million km		239%		Ambition 4	
	Pipes	100 000	km		137%		Ambition 3	
Other	Other	0,0	Million tons		239%		Ambition 2	81

Global **C**alculator

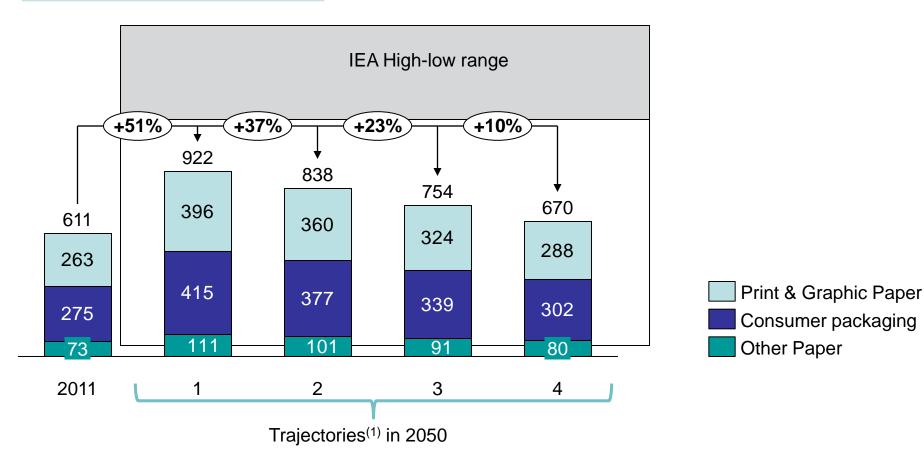

Group	Product	2011 lifetime (years)	Lifetime per ambition (years)
	Cars & light truck	12,2	16
	Cars & light truck EV	12,4	16
_	Trucks	12,4	18
Transport	Ships	40	
	Rail	30	39
	Airplanes	20	26
	Batteries	/	
	Residential Buildings	/	
	Other Buildings	/	
Buildings	Infrastructure	/	
	Mechanical equipment	21,9	21
	Appliance	11,9	19
_	Print & Graphic Paper	/	
Consumer goods	Metal goods	/	
50003	Consumer packaging	/	
Food	Fertilizer	/	
	Windmills	24,1	21
	PV panels	20,0	20 Ambilian
Energy	Electrical Equipment	/	Ambition 1
	Electrical cables	/	Ambition 2
	Pipes	/	Ambition 3
Other	Other	/	Ambition 4

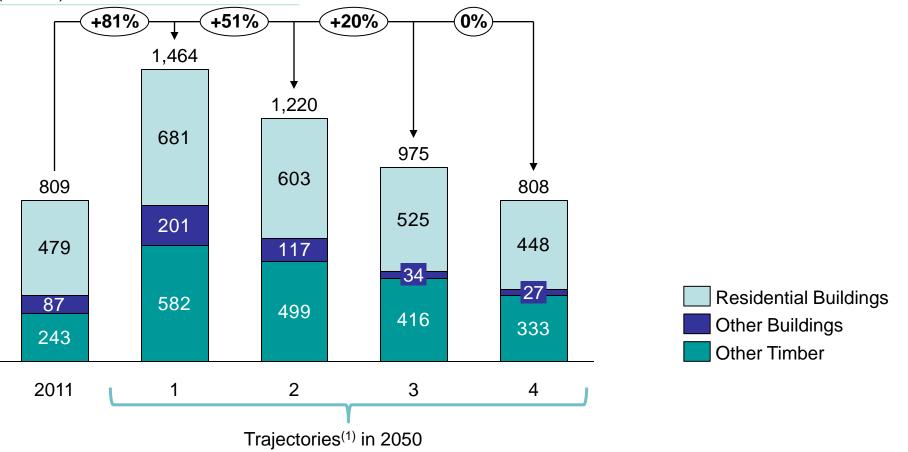
NOTE (1) Population follows the average UN projection in all ambitions

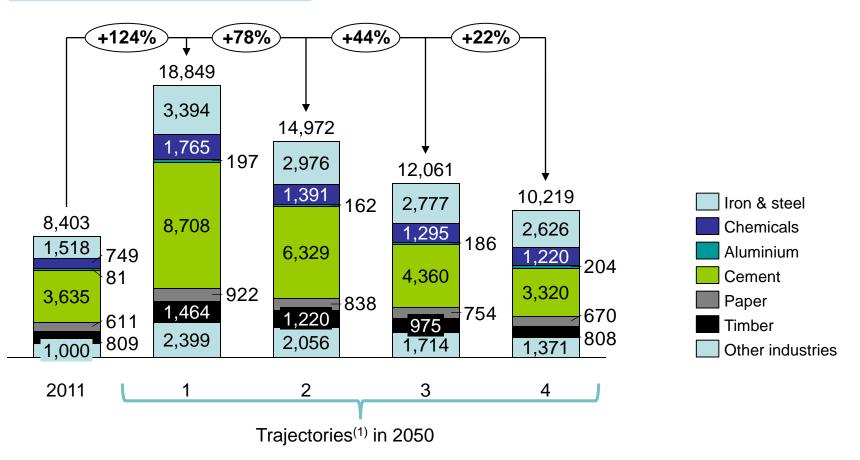


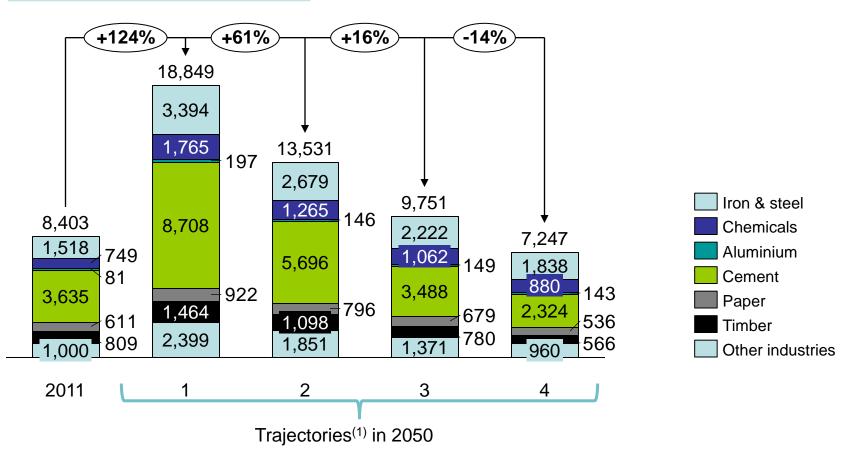

NOTE: (1) The population follows the average UN projection in all four trajectories SOURCE: IEA ETP 2012, Global calculator model

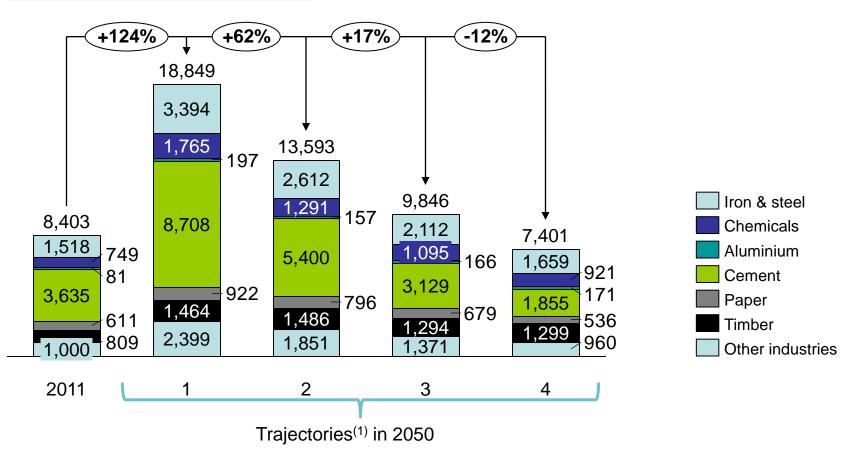
HVC.Cars & light truck

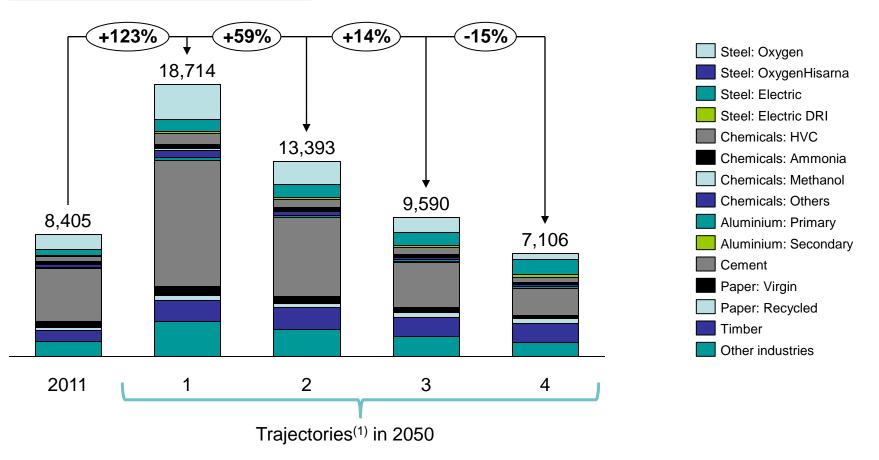


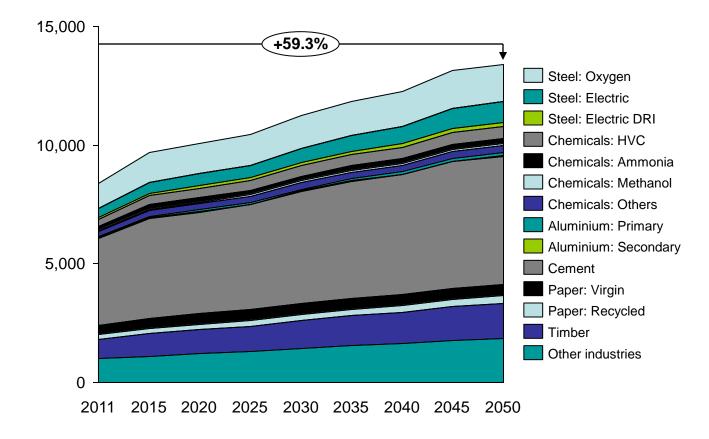

NOTE: (1) The population follows the average UN projection in all four trajectories SOURCE: IEA ETP 2012, Global calculator model


NOTE: (1) The population follows the average UN projection in all four trajectories SOURCE: IEA ETP 2012, Global calculator model


NOTE: (1) The population follows the average UN projection in all four trajectories SOURCE: IEA ETP 2012, Global calculator model


NOTE: (1) The population follows the average UN projection in all four trajectories SOURCE: IEA ETP 2012, Global calculator model


NOTE: (1) The population follows the average UN projection in all four trajectories SOURCE: IEA ETP 2012, Global calculator model


NOTE: (1) The population follows the average UN projection in all four trajectories SOURCE: IEA ETP 2012, Global calculator model

ReduceDesignSwitchRecycleProcessFuel SwitchEnergy
efficiencyCCSTotal industryGlobalMaterials demand growth with ambition 2 (1)Calculator

Production evolution per industry with an ambition 2, (Mton)

NOTE: (1) The population follows the average UN projection in all four trajectories SOURCE: IEA ETP 2012, Global calculator model

Agenda

Global **C**alculator

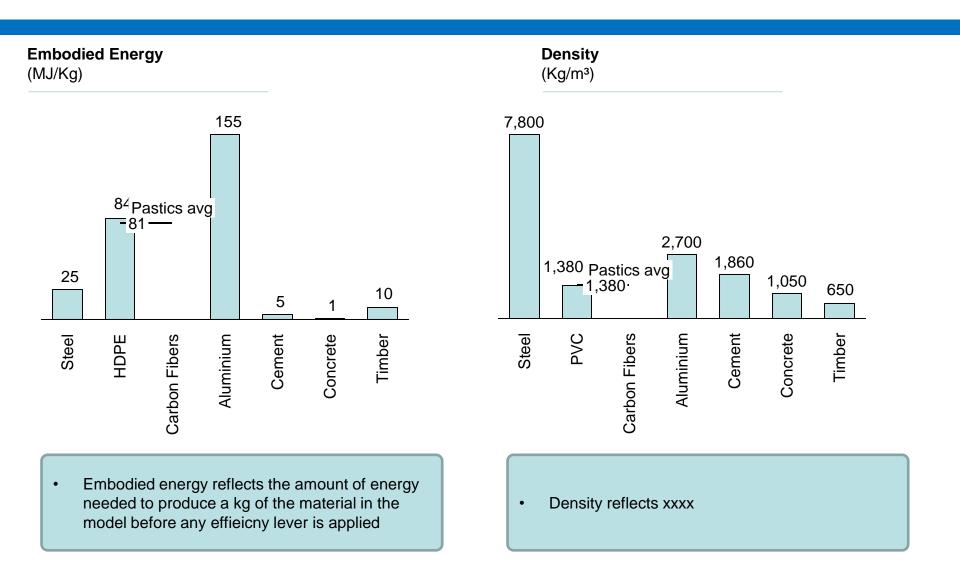
Introduction to the global calculator

2011 overview of energy and material demand

2050 growth of materials and emissions

Materials growth

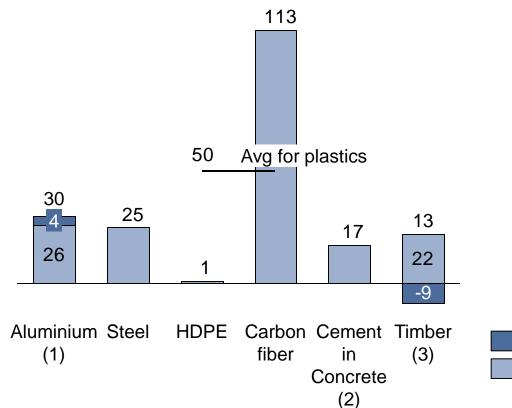
- Growth depending on ambition level
- Discussion on Material switch


Resulting GHG emissions

- Resulting emissions depending on ambition level
- Discussion on ambition levels across sectors
- Discussion on CCS

Aluminium assumptions summary

Each material has a different set of properties


Global **C**alculator

The specific Young modulus indicates how much of a material is required to replace another

Global **C**alculator

Specific Young modulus (Young modulus in Gpa, divided by density)

Rationale

- We use these figures to compute how much material is required to replace another (e.g., ~2x the weight of timber to replace steel)
- This is a high level approximation and the conversion factor should differ for each pair of products
- Product lives are assumed to be similar

Global calculator correction for switch factor Specific Young modulus

NOTE: (1) Tweaked to 20% more than steel, to represent the fact 20% less mass is typically required in transport applications (2) Assuming 8% cement per ton concrete

(3) Assuming Pine, then removing 40% to account to material discontinuity safety factor

SOURCE : Wikipedia Specific modulus

Material switches in Transport

Switch

Design

Reduce

Groups	Products	Units	Composition per u 2011	nit (tons, (vs 20 Ambition 1	11)) Ambition 4
	Cars & light truck	units	Methane: 0,02 ton Other chem: 0,07ton Steel: 3,030 ton Alu: 1 ton	idem	 Replace 20% steel by aluminium 20% steel by carbon fibres
	Trucks	units		idem	 Replace 20% steel by aluminium 20% steel by carbon fibres
Transport	Ships	units	Steel: 0,462 ton	idem	ldem
	Rail	units	Steel: 6,875 ton	idem	ldem
	Airplanes	units	Alu: 63 ton	idem	Replace50% alu by carbon fiber (HVC)

Material switches in Buildings

Switch

Design

Reduce

Groups	Products	Units	Composition per unit (tons, (vs 2011))			
			2011	Ambition 1	Ambition 4	
	Buildings (residential & others)	m² (ground surface)	Steel: 0,202 ton Alu: 0,008 ton HVC: 0,02 ton Methanol: 0,004ton Other chem: 0,004 ton Cement:0,560 ton Bricks: not modelled Timber: 0,22 ton	idem	 Replace 20% steel by timber 20% concrete by timber 5% concrete by insulation materials (HVC) 	
Buildings	Infrastructure	m² (ground surface)	Steel: 0,187 ton Alu: 0,001 ton Cement0,450 ton	idem	 Replace 5% concrete by insulation materials (HVC) 	
	Mechanical equipment	tons	Steel: 0,750 ton Alu: 0,013 ton	idem	idem	
	Appliance	Million tons	Steel: 0,17 ton Alu: 0,02 ton HVC: 0,43 ton Methanol: 0,08ton Other chem: 0,28ton	idem	idem	

Material switches in Consumer goods and Energy

Switch

Design

Reduce

Groups	Products	Units	Composition per unit (tons, (vs 2011))			
			2011	Ambition 1	Ambition 4	
	Print & Graphic Paper	Million tons	Paper: 1 ton	idem	idem	
	Metal goods	Million tons	Steel: 0,750 ton Alu: 0,03 ton	idem	idem	
Consumer goods	Consumer packaging	Million tons	Steel: 0,021 ton Alu: 0,023 ton HVC: 0,240 ton Methanol: 0,04ton Other Chem: 0,157ton Paper: 0,516 ton	idem	idem	
	Fertilizer	tons	Ammonia: 1 ton	idem	idem	
	Windmills	2MW Units	Steel: 350 tons HVC: 30 tons	idem	idem	
Energy	PV panels	m2	Steel: 2 kg Alu: 2 kg HVC: 5 ton	idem	idem	
	Electrical equipment	tons	Steel: 0,750 ton Alu: 0,03 ton	idem	idem	
	Electrical cables	Km	Alu: 0,3 ton	idem	idem	
	Pipes	meter	Steel: 0,4 ton	idem	idem	

- In packaging, both a tendency to more (e-shipping) and to less (more lightweight, tailored to needs) packaging
- Check expectations with EU packaging federation

Open questions

Discussion topics on material switch

Trends	Impact of urbanisation on the proportion of Steel/Cement in buildings
Intellectual capital	 Which working groups compare the applicability of materials Which dimensions should be taken into account Vedh has a working group Others ?
Other dimensions to take into account	 All products could keep similar lifetimes Timber is less uniform, so a safety margin needs to be included (current assumption of +40% requirements) Fiber glass cannot be recycled and are harder to repair
Costs	 How to you suggest to account of the costs associated with each material? Use the embedded energy of each material?
Magnitude orders	 Overall substitution rate through the above is limited, even in level 4: -11% steel, -1% aluminium, -16% cement

Agenda

Global **C**alculator

Introduction to the global calculator

2011 overview of energy and material demand

2050 growth of materials and emissions

Materials growth

- Growth depending on ambition level
- Discussion on Material switch

Resulting GHG emissions

- Resulting emissions depending on ambition level
- Discussion on ambition levels across sectors
- Discussion on CCS

Aluminium assumptions summary

Agenda

Global **C**alculator

Introduction to the global calculator

2011 overview of energy and material demand

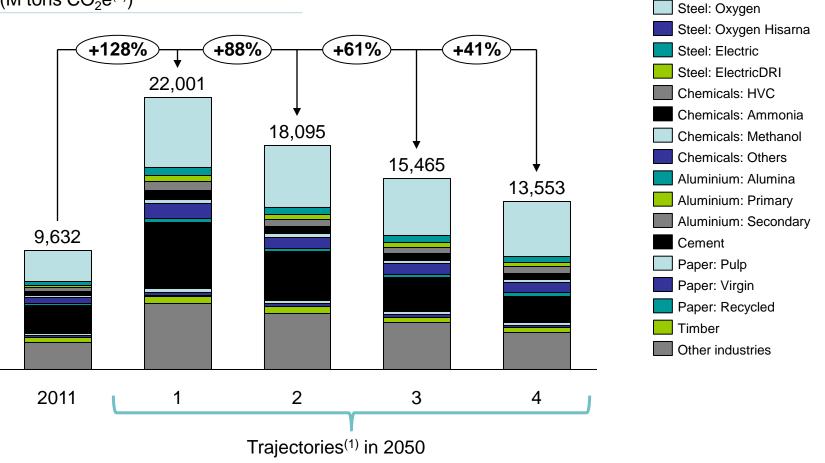
2050 growth of materials and emissions

Materials growth

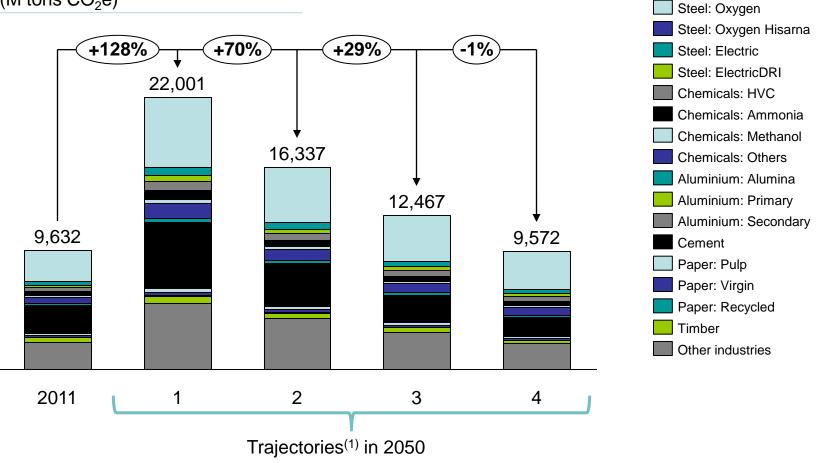
- Growth depending on ambition level
- Discussion on Material switch

Resulting GHG emissions

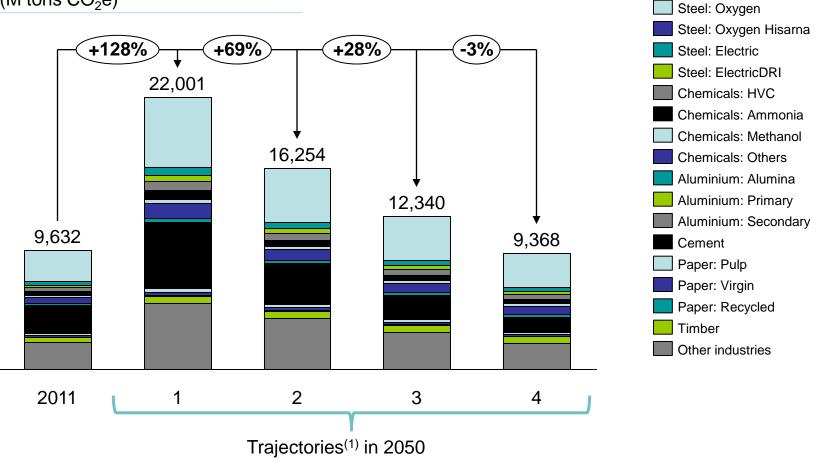
- Resulting emissions depending on ambition level
- Discussion on ambition levels across sectors
- Discussion on CCS

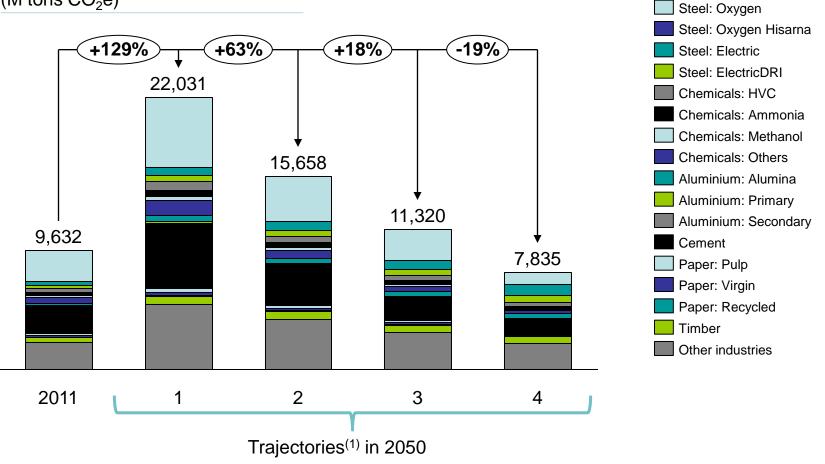

Aluminium assumptions summary

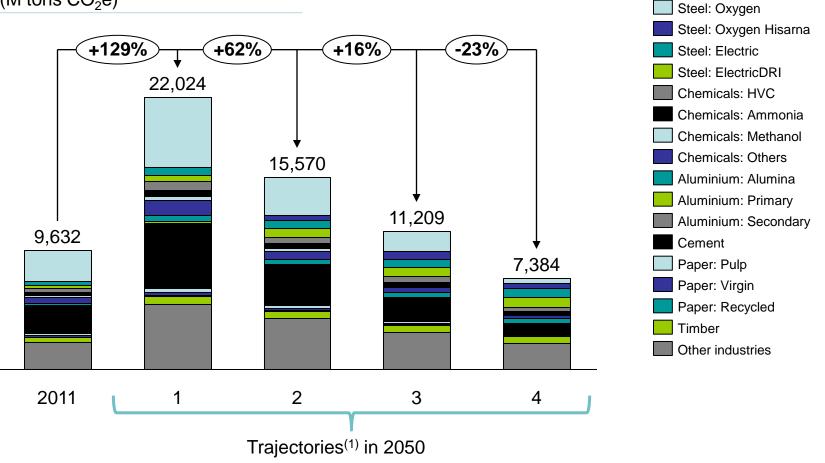
Global **C**alculator

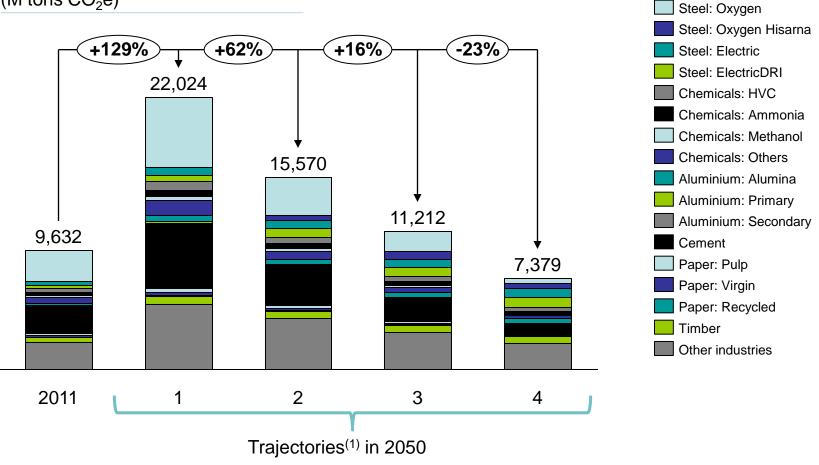

List of actions & levers assessed

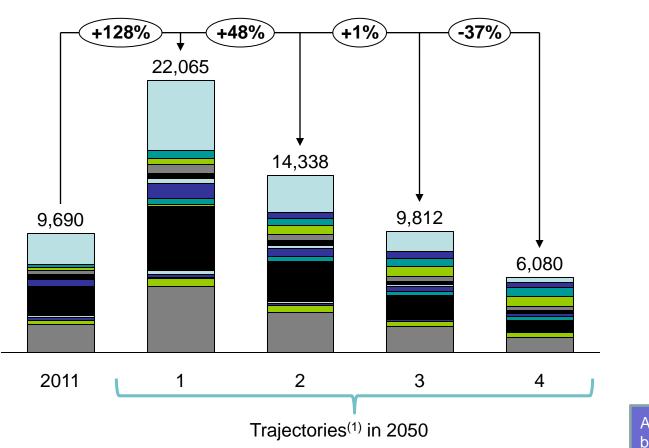
Indu grou	•	Design	Switch	Recycle	Process improvements	Alternativ e fuels	Energy efficiency	CCS
Steel		 Product Design High strength steel 	 Switch to alu, fibres & timber 	 Product recycling % scrap based (for each various technologies exist) 	 Carbon materials reduction Portion of Classic BOF /Top gas recycling & Hisarna/ oxygen/EAF DRI/EAF scrap Smelt reduction, Hydrogen, Electrolysis 	 Coke to gas injection Coal PCI to biomass 	 Material efficiency Energy efficiency (EE) CHP 	• CCS
Che mica	All	 Product design 		Product recyclingMaterial recycling	Process intensificationCatalyst optimization	Oil to gas	 Clustering & integration 	• CCS
ls	HVC		 Switch from steel, alu, cement 	Green chemistry	Included in energy efficiency		• EE	• CCS
	Ammonia			Fertilizers composition	 Included in energy efficiency 		• EE	• CCS
	Methanol						• EE	• CCS
	Other			Green chemistry	 Included in energy efficiency Selective catalytic reduction 	 Hydrogen production by electrolysis Natural gas or biomass 	 EE Switch Mercury to membrane 	• CCS
Alumin	ium	 Product design 	 Switch to fibres 	Product recyclingMaterial recycling	 Included in energy efficiency 	 Gas injection 	• EE	• CCS
Cemen	t	Product design	Switch to Timber & Plastics	Composed/metallurgical cement	Dry process	Coal & oil to Waste & biomass	 EE CHP /heat recovery 	• CCS
Pulp &	paper	• /	• /	More recycled paperOther cellulose sourcesBio-refineries	Black liquor gasificationDrying innovation	 Coal & oil to gas Coal & oil to biomass 	• EE • CHP	• CCS
Timber		 Product design 	 Switch from steel &cement 	• /	• /	• /	• /	• /











NOTE: (1) The population follows the average UN projection in all four trajectories (2)Assuming biomass emits, not including electricity related emissions SOURCE: IEA ETP 2012, Global calculator model

110

NOTE: (1) The population follows the average UN projection in all four trajectories (2)Assuming biomass emits, not including electricity related emissions SOURCE: IEA ETP 2012, Global calculator model An emission increase is expected here because of the additional gas consumption in chemicals and paper for the CHPs (while electricity emissions 1 are not accounted for in this slide)

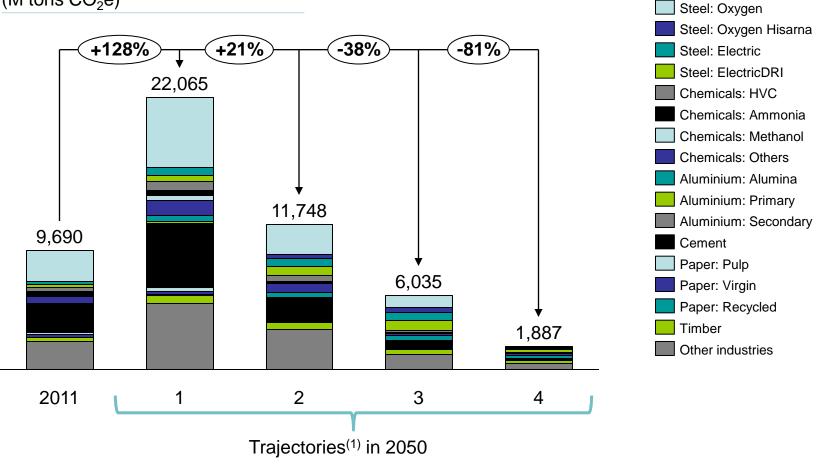
Steel: Oxygen

Steel: Electric Steel: ElectricDRI

Chemicals: HVC Chemicals: Ammonia Chemicals: Methanol Chemicals: Others

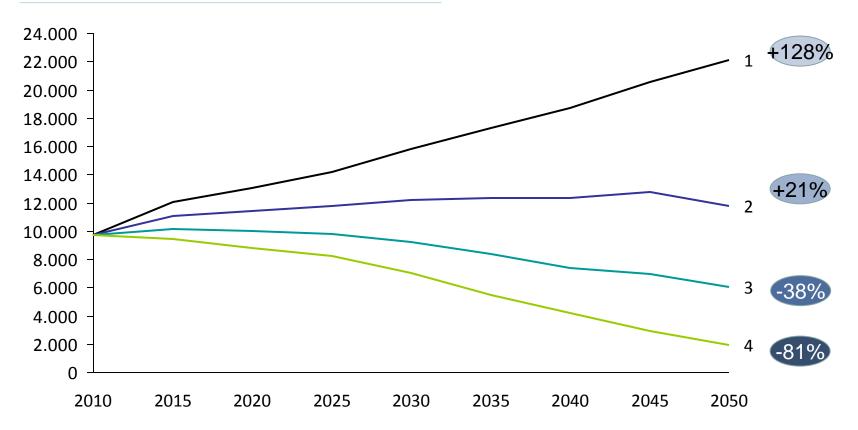
Aluminium: Alumina Aluminium: Primary Aluminium: Secondary

Cement Paper: Pulp


Timber

Paper: Virgin Paper: Recycled

Other industries


Steel: Oxygen Hisarna

Total GHG emissions for different lever ambition levels (MtonCO₂e)

Agenda

Global **C**alculator

Introduction to the global calculator

2011 overview of energy and material demand

2050 growth of materials and emissions

Materials growth

- Growth depending on ambition level
- Discussion on Material switch

Resulting GHG emissions

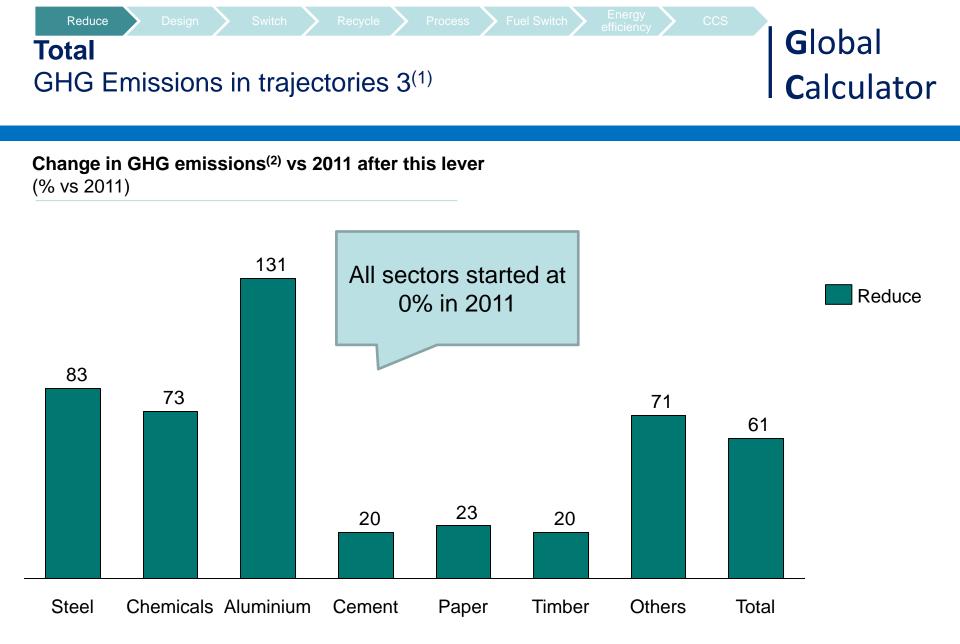
- Resulting emissions depending on ambition level
- Discussion on ambition levels across sectors
- Discussion on CCS

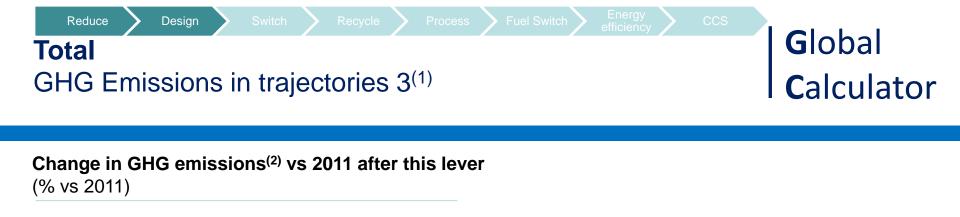
Aluminium assumptions summary

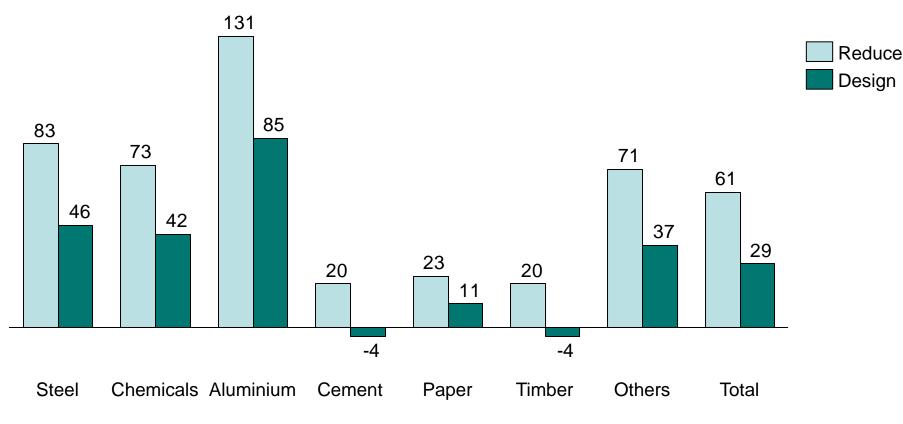
Ambition 1 For the materials production, ~50 actions are being considered

Global **C**alculator

List of actions & levers assessed

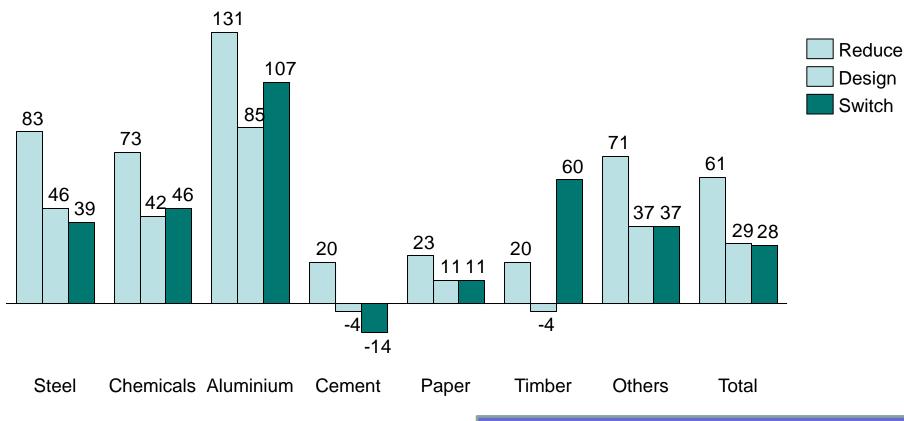

Indu grou	•	Design	Switch	Recycle	Process improvements	Alternativ e fuels	Energy efficiency	CCS
Steel		 Product Design High strength steel 	 Switch to alu, fibres & timber 	EAF/Oxygen Mix	 Carbon materials reduction Portion of Classic/Top gas recycling & Hisarna/ oxygen/EAF DRI/EAF scrap Smelt reduction, Hydrogen, Electrolysis 	 Coke to by gas injection Coal PCI to biomass 	 Energy efficiency (EE) CHP 	• CCS
Che mica	All	 Product design 			Process intensificationCatalyst optimization	Oil to gas	 Clustering & integration 	• CCS
ls	HVC		 Switch from steel, alu, cement 	Green chemistry	Included in energy efficiency	 Fuel switches 	• EE	• CCS
	Ammonia			Fertilizers composition	 Included in energy efficiency 		• EE	• CCS
	Methanol							• CCS
	Other			Green chemistry	 Included in energy efficiency Selective catalytic reduction 	 Hydrogen production by electrolysis Natural gas or biomass 	 EE Switch Mercury to membrane 	• CCS
Alumin	nium	 Product design 	 Switch to fibres 	Increase proportion Recycled	 Included in energy efficiency 	 Gas injection 	• EE	• CCS
Cemen	it	 Product design 	Switch to Timber & Plastics	 Composed/metallurgical cement Design 	Dry process	Coal & oil to Waste & biomass	 EE CHP /heat recovery 	• CCS
Pulp &	paper	• /	• /	More recycled paperOther cellulose sourcesBio-refineries	Black liquor gasificationDrying innovation	 Coal & oil to gas Coal & oil to biomass 	• EE • CHP	• CCS
Timber	r	 Product design 	 Switch from steel &cement 	• /	• /	• /	• /	• /

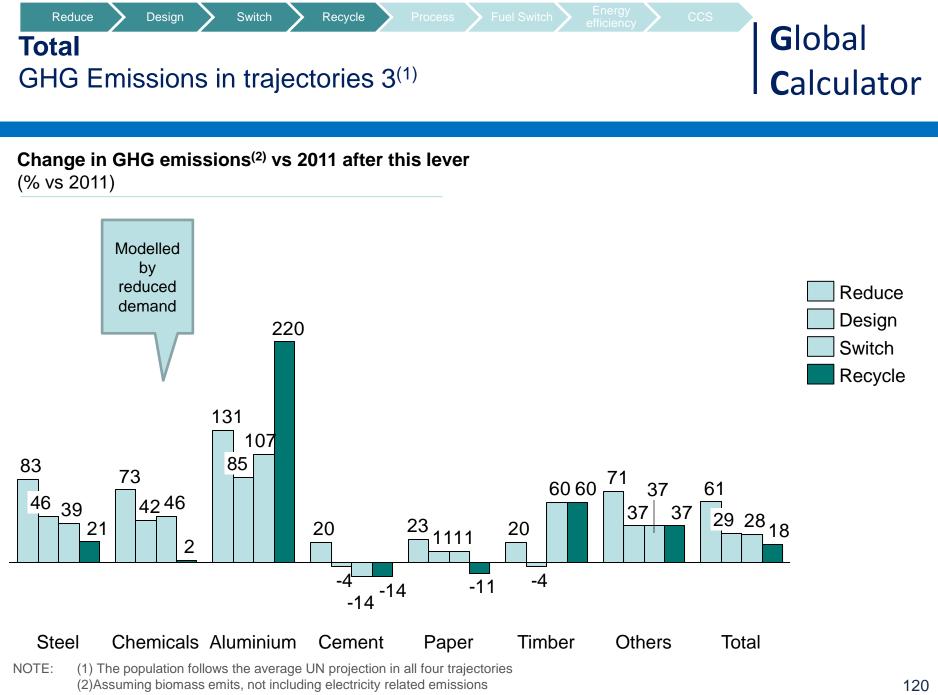

Total emissions, along each step (by materials) (M tons CO₂e, (% evolution vs 2011))

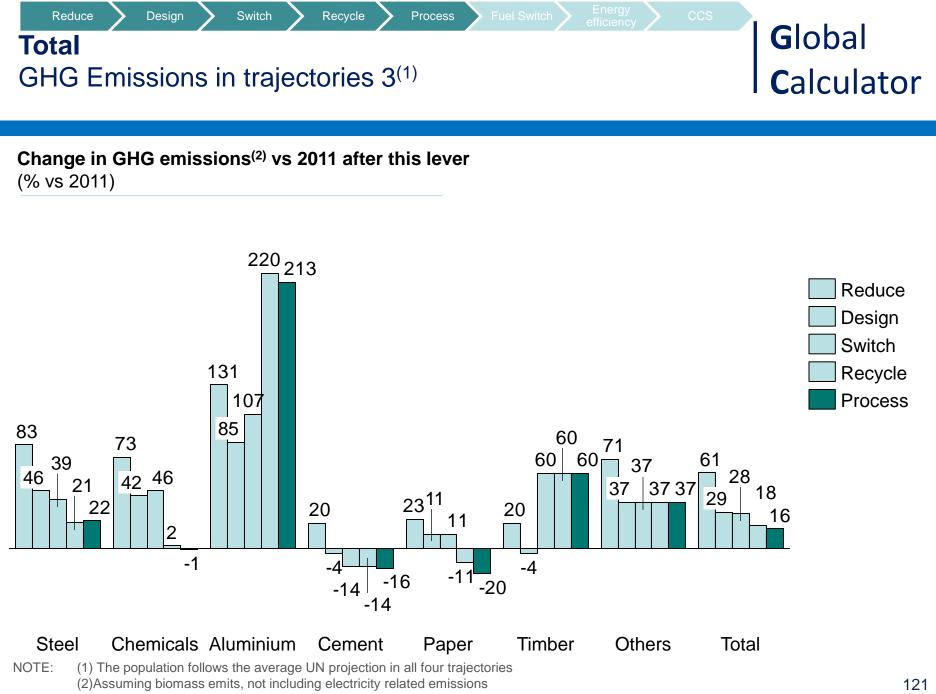

Material	2011	2050								
Material		Demand	Design	Switch	Recycling	Process	Fuel	EE	CCS	
Steel	3.039	5558 (83%)	4447 (46%)	4227 (39%)	3690 (21%)	3718 (22%)	3715 (22%)	3642 (20%)	2842 (-6%)	
Chemicals & petrochemicals	1.286	2223 (73%)	1824 (42%)	1880 (46%)	1315 (2%)	1275 (-1%)	1269 (-1%)	1225 (-5%)	466 (-64%)	
Aluminium	150	347 (131%)	278 (85%)	311 (107%)	481 (220%)	470 (213%)	470 (213%)	449 (199%)	385 (156%)	
Cement	2.206	2646 (20%)	2117 (-4%)	1899 (-14%)	1899 (-14%)	1844 (-16%)	1855 (-16%)	1746 (-21%)	633 (-71%)	
Pulp & Paper	393	485 (23%)	436 (11%)	436 (11%)	349 (-11%)	316 (-20%)	316 (-19%)	238 (-39%)	86 (-78%)	
Timber	348	419 (20%)	335 (-4%)	557 (60%)	557 (60%)	557 (60%)	557 (60%)	417 (20%)	417 (20%)	
Other industries	2.210	3787 (71%)	3030 (37%)	3030 (37%)	3030 (37%)	3030 (37%)	3032 (37%)	2095 (-5%)	1205 (-45%)	
Total	9.632	15465 (61%)	12466 (29%)	12339 (28%)	11320 (18%)	11210 (16%)	11214 (16%)	9812 (2%)	6034 (-37%)	

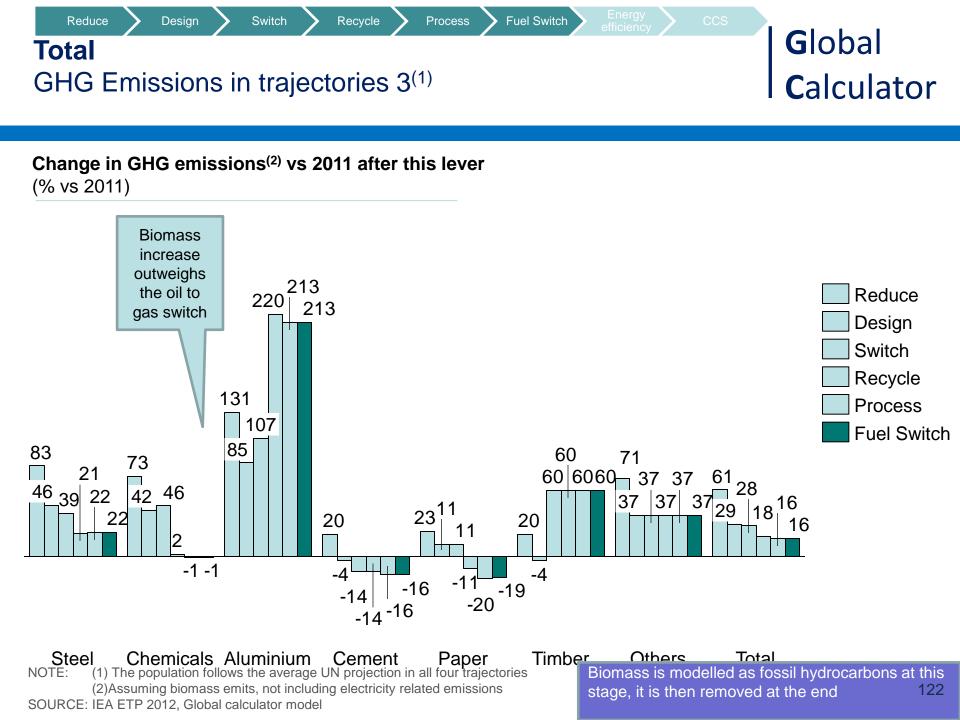
Knowing the different sector characteristics, do these reductions seem balanced across sectors ?

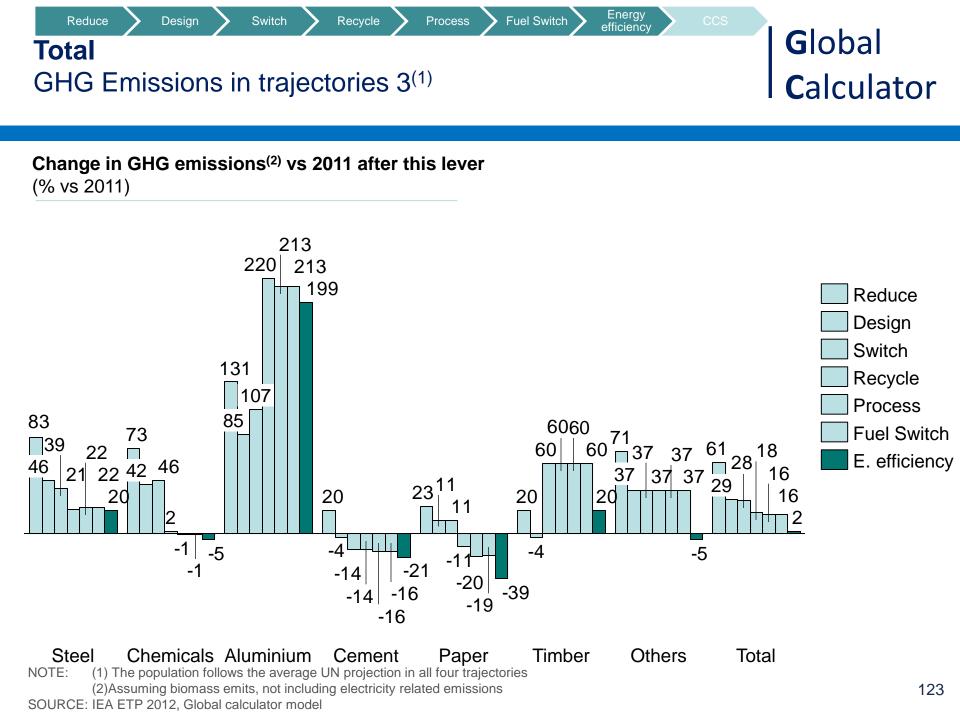
NOTE: (1) The population follows the average UN projection in all four trajectories (2)Assuming biomass emits, not including electricity related emissions SOURCE: IEA ETP 2012, Global calculator model

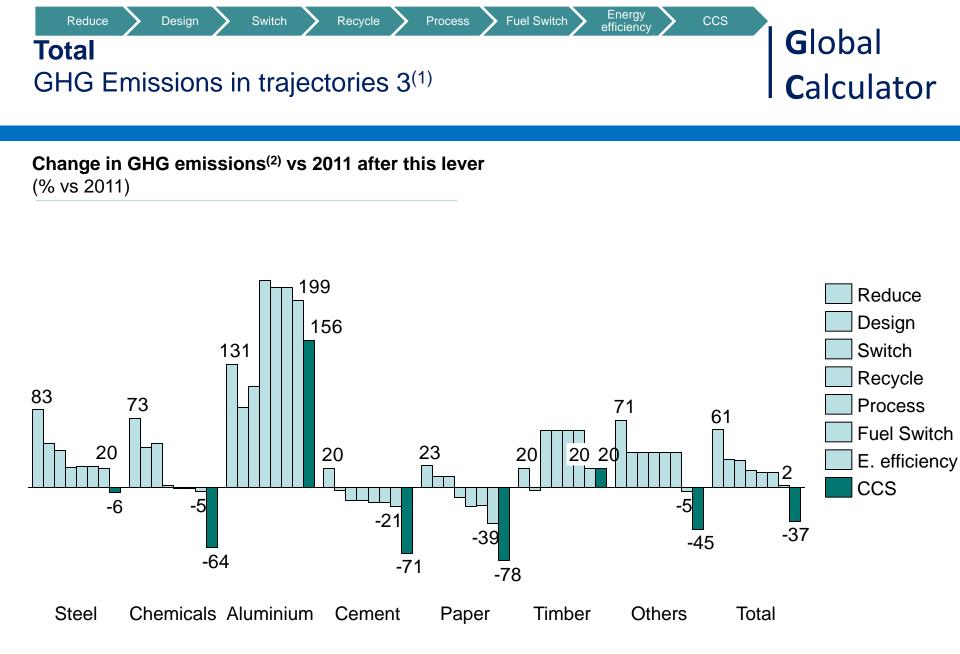



NOTE: (1) The population follows the average UN projection in all four trajectories (2)Assuming biomass emits, not including electricity related emissions SOURCE: IEA ETP 2012, Global calculator model


Change in GHG emissions⁽²⁾ vs 2011 after this lever (% vs 2011)


NOTE: (1) The population follows the average UN projection in all four trajectories (2)Assuming biomass emits, not including electricity related emissions The fact carbon fibres emit more is currently not modelled 119 SOURCE: IEA ETP 2012, Global calculator model




SOURCE: IEA ETP 2012, Global calculator model

SOURCE: IEA ETP 2012, Global calculator model

NOTE: (1) The population follows the average UN projection in all four trajectories (2)Assuming biomass emits, not including electricity related emissions SOURCE: IEA ETP 2012, Global calculator model

Reduce

Total

Process > Fuel Switch

Energy efficiency

CCS

Global **C**alculator

Total emissions, along each step (by technology) (M tons CO₂e, (% evolution vs 2011))

GHG Emissions in trajectories 3

BACKUP

Material	Technology	2011	2050							
Material			Demand	Design	Switch	Recycling	Process	Fuel	EE	CCS
	Oxygen	2.529	4626 (83%)	3701 (46%)	3518 (39%)	2477 (-2%)	1674 (-34%)	1670 (-34%)	1598 (-37%)	1022 (-60%)
Steel	Oxygen Hisarna	-	N/A							
Sleer	Electric	300	548 (83%)	438 (46%)	417 (39%)	714 (138%)	625 (109%)	625 (109%)	625 (109%)	625 (109%)
	Electric DRI	210	384 (83%)	307 (46%)	292 (39%)	499 (138%)	794 (278%)	794 (278%)	794 (278%)	794 (278%)
	HVC	324	559 (73%)	459 (42%)	473 (46%)	441 (36%)	420 (30%)	413 (28%)	396 (22%)	198 (-39%)
Chemicals &	Ammonia	286	495 (73%)	406 (42%)	419 (46%)	318 (11%)	318 (11%)	319 (11%)	296 (3%)	44 (-84%)
petrochemicals	Methanol	158	273 (73%)	224 (42%)	231 (46%)	130 (-18%)	130 (-18%)	130 (-18%)	121 (-23%)	18 (-89%)
	Others	518	895 (73%)	735 (42%)	757 (46%)	426 (-18%)	406 (-22%)	406 (-22%)	412 (-21%)	206 (-60%)
	Alumina	106	245 (131%)	196 (85%)	219 (107%)	365 (245%)	365 (245%)	365 (245%)	349 (229%)	349 (229%)
Aluminium	Primary	30	70 (131%)	56 (85%)	62 (107%)	104 (245%)	95 (214%)	95 (214%)	91 (200%)	33 (9%)
	Secondary	14	33 (131%)	26 (85%)	29 (107%)	11 (-20%)	10 (-27%)	10 (-27%)	10 (-31%)	4 (-75%)
Cement	Cement	2.206	2646 (20%)	2117 (-4%)	1899 (-14%)	1899 (-14%)	1844 (-16%)	1855 (-16%)	1746 (-21%)	633 (-71%)
	Pulp	194	240 (23%)	216 (11%)	216 (11%)	163 (-16%)	148 (-24%)	148 (-24%)	109 (-44%)	40 (-80%)
Pulp & Paper	Virgin	176	217 (23%)	195 (11%)	195 (11%)	148 (-16%)	134 (-24%)	134 (-24%)	101 (-42%)	37 (-79%)
	Recycled	23	28 (23%)	26 (11%)	26 (11%)	38 (63%)	34 (49%)	34 (49%)	27 (19%)	10 (-57%)
Timber	Timber	348	419 (20%)	335 (-4%)	557 (60%)	557 (60%)	557 (60%)	557 (60%)	417 (20%)	417 (20%)
Other industries	Other industries	2.210	3787 (71%)	3030 (37%)	3030 (37%)	3030 (37%)	3030 (37%)	3032 (37%)	2095 (-5%)	1205 (-45%)
Total	Total	9.632	15465 (61%)	12466 (29%)	12339 (28%)	11320 (18%)	11210 (16%)	11214 (16%)	9812 (2%)	6034 (-37%)

Knowing the different sector characteristics, do these

reductions seem balanced across sectors ?

Agenda

Global **C**alculator

Introduction to the global calculator

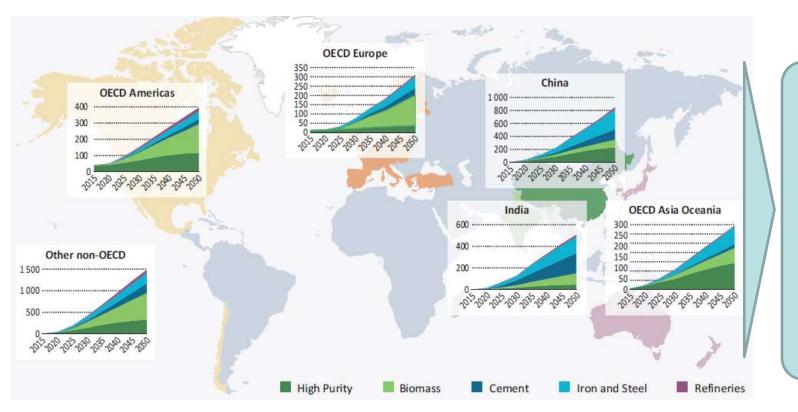
2011 overview of energy and material demand

2050 growth of materials and emissions

Materials growth

- Growth depending on ambition level
- Discussion on Material switch

Resulting GHG emissions

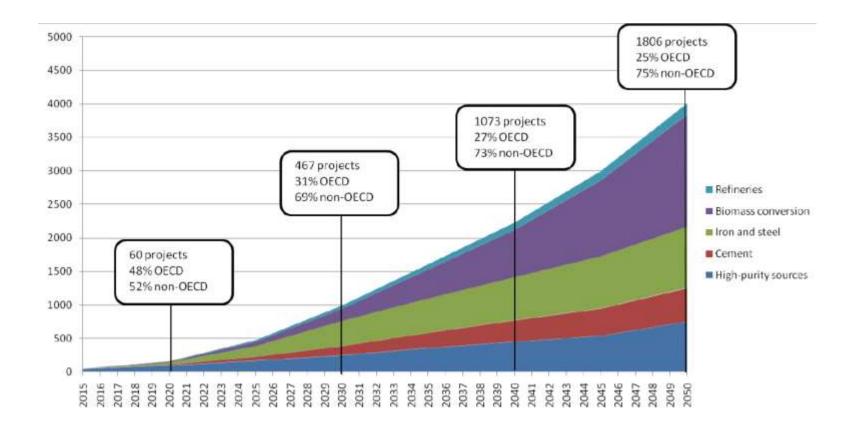

- Resulting emissions depending on ambition level
- Discussion on ambition levels across sectors
- Discussion on CCS

Aluminium assumptions summary

Carbon Capture & Storage Projections by region

Global **C**alculator

Capture rate (MtCO₂/year)

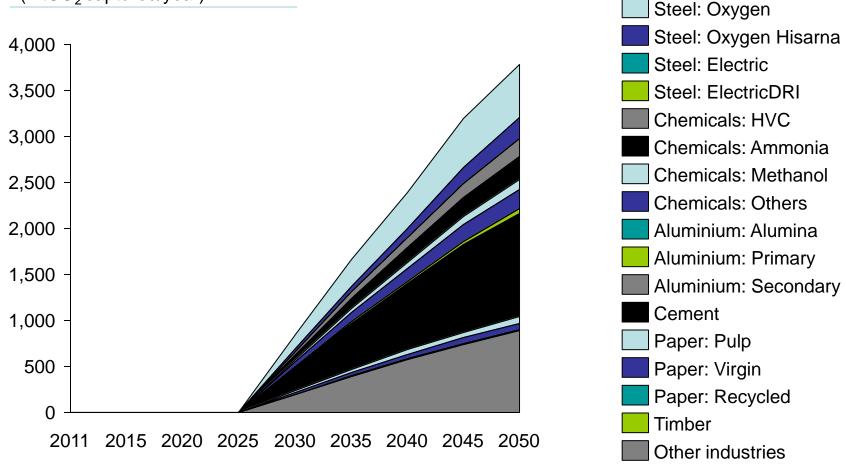


Blue scenario leads to a 4 Gt reduction in 2050, while total additional costs add up to 3 trillion USD by 2050

Carbon Capture & StorageGlobalBlue roadmap goes from 60 projects in 2020 to 1800 in 2050Calculator

Capture rate

(MtCO₂ captured/year)

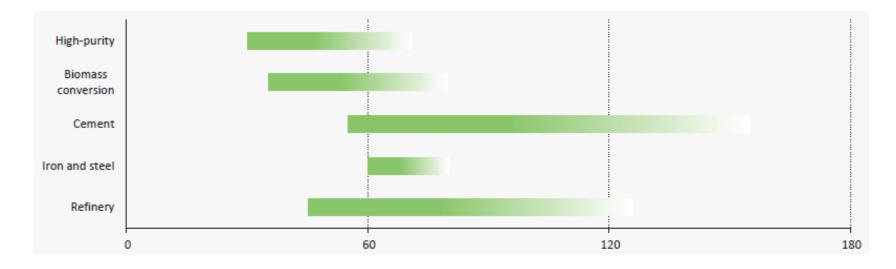


Carbon Capture & Storage Industry ambition 3 leads to a similar capture rate

Global **C**alculator

Capture rate

 $(MtCO_2 captured/year)$



NOTE: Biomass is considered as fossil fuel & electricity emissions are not counted in this view SOURCE: Global Calculator model,

Carbon Capture & Storage Cost per industry

Global **C**alculator

Typical ranges of costs of emission reductions from industrial applications of CCS (USD/tCO₂e avoided)

In addition, an electricity consumption of 0,33 TWh/MtCO₂e captured is modelled

NOTE: The range of costs shown here reflect the regional average costs of applying CCS in each sector, and, therefore, the overall cost of abatement in a sector will be affected by the assumed level of CCS uptake in each sector (IEA, 2009 and IEA and UNIDO 2011). These costs include the cost of capture, transport and storage, but do not assume that storage generates revenues (i.e. CO₂ storage through enhanced oil recovery (EOR) is not considered as a storage option.

SOURCE: ETP 2012, IEA

Global **C**alculator

Sector implications for a blue scenario equivalent

Iron & Steel	 Improve the economics of capture techniques in the iron & steel sector Equip 75% of new production with CCS by 2030 in OECD (50% in non OECD)
Chemicals (High Purity)	 Compile inventory of opportunities & assess costs Perform demonstration projects involving hydrogen, ammonia & ethylene processes
Aluminium	Assumed similar to steel (relatively)
Cement	 Improve the economics of capture techniques under flue gas conditions which are typical for the cement sector Perform full scale plant between 2015 & 2020
Paper	 Assumed similar to Biomass sector objectives (relatively) R&D on biomass gaseification processes Realise full scale plants by 2020
Timber	Assumed similar to paper

Agenda

Global **C**alculator

Backup

Introduction to the global calculator

2011 overview of energy and material demand

2050 growth of materials and emissions

Aluminium assumptions summary

Global **C**alculator

Lever	Ambitions							
	1	2	3	4				
Design	0%	-10%	-20%	-30%				
Switch to Aluminium from steel	0%	0,5% 1%		2%				
Switch to plastics from aluminium (planes)	not modeled	not modeled	not modeled	not modeled				
Recycling(% of total)	+10%	+15%	+20%	+25%				
Process improvements (as EE)	0%	-5%	-10%	-20%				
Fuel switches (coal to biomass in primary alu	0%	2%	3%	5%				
CHP	0%	0%	0%	0%				
Energy efficiency (additional)	0%	-3%	-5%	-10%				
CCS(emissions captured)	0%	43%	64%	85%				

NOTE: Because it is used in long term products (alumium locked in buildings & cables) aluminium recyclability rates are expected to decrease SOURCE: Global Calculator consultations, WorldAluminium

NOTE

- Check 2011 recycled rates:
 - 30% (world aluminium)
 - 52% (current source)

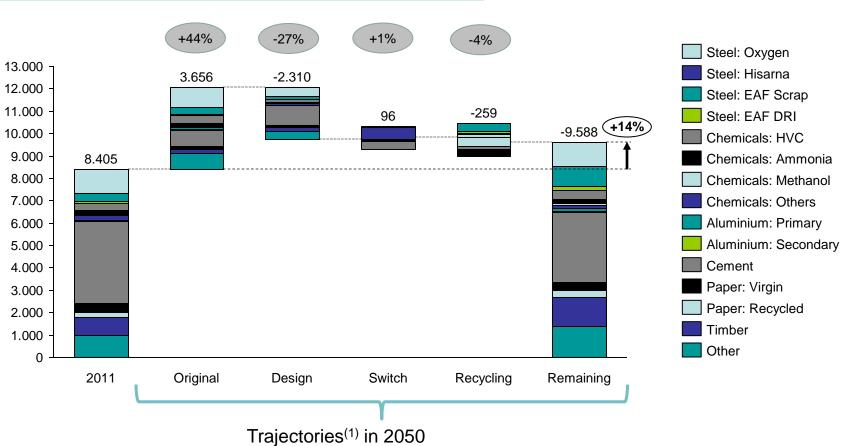
Agenda

Global **C**alculator

Backup

Industry specific water falls

Existing studies

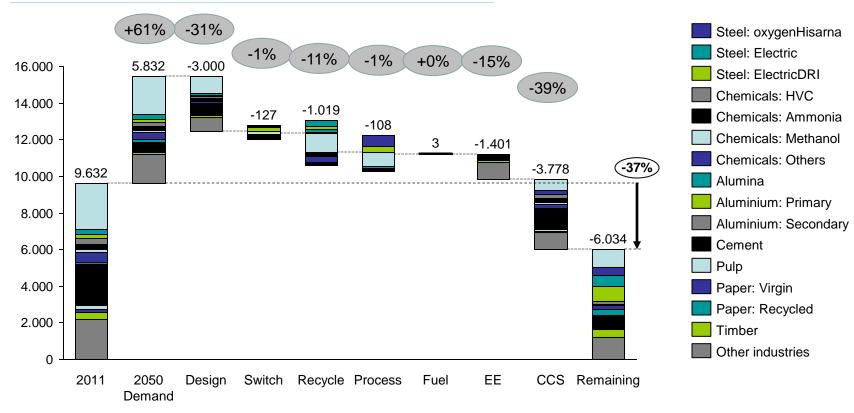

Industry overview

Reduction potential Details for ambition level 3 (then detailed per industry)

Global **C**alculator

Total production for ambition level 3

(M tons, % of 2011)


NOTE: (1) The population follows the average UN projection in all four trajectories (2)Assuming biomass emits, not including electricity related emissions SOURCE: IEA ETP 2012, Global calculator model

Global

Calculator

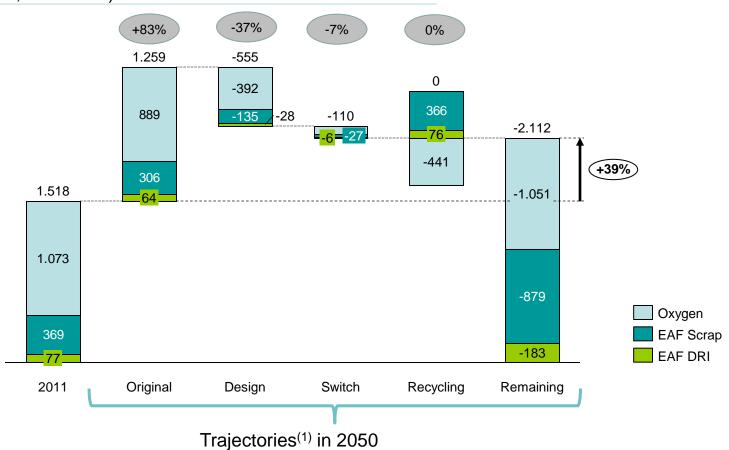
Reduction potential Details for ambition level 3 ⁽¹⁾ (then detailed per industry)

Total GHG emissions in 2050, for ambition level $3^{(1,2)}$, using different levers⁽³⁾ (MtCO₂e, % of 2010)

NOTES: (1) The population follows the average UN projection in all four trajectories

(2) Excluding biomass related reductions & electricity related emissions

(3) Other sectors are impacted by these transitions (e.g. additional emissions are created in the aluminium and plastics sectors)

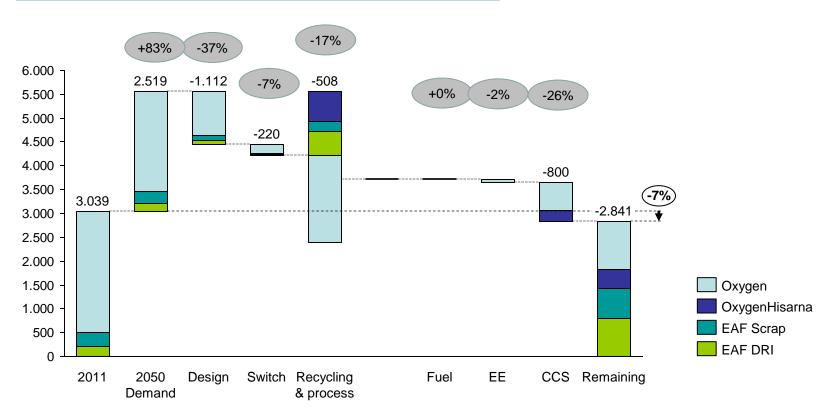

Percentage reductions are calculated vs the 2010 baseline

SOURCE: IEA ETP 2012, Global calculator model

Reduction potential Details for ambition level 3

Global **C**alculator

Steel production for ambition level 3 (M tons, % of 2011)



NOTE: (1) The population follows the average UN projection in all four trajectories (2)Assuming biomass emits, not including electricity related emissions SOURCE: IEA ETP 2012, Global calculator model

Reduction potential Details for ambition level 3 ⁽¹⁾

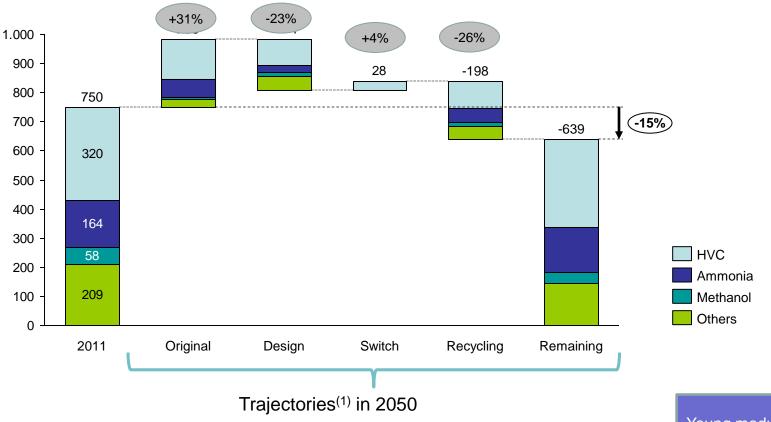
Global **C**alculator

Steel GHG emissions in 2050, for ambition level $3^{(1,2)}$, using different levers⁽³⁾ (MtCO₂e, % of 2010)

NOTES: (1) The population follows the average UN projection in all four trajectories

(2) Excluding biomass related reductions & electricity related emissions

(3) Other sectors are impacted by these transitions (e.g. additional emissions are created in the aluminium and plastics sectors)

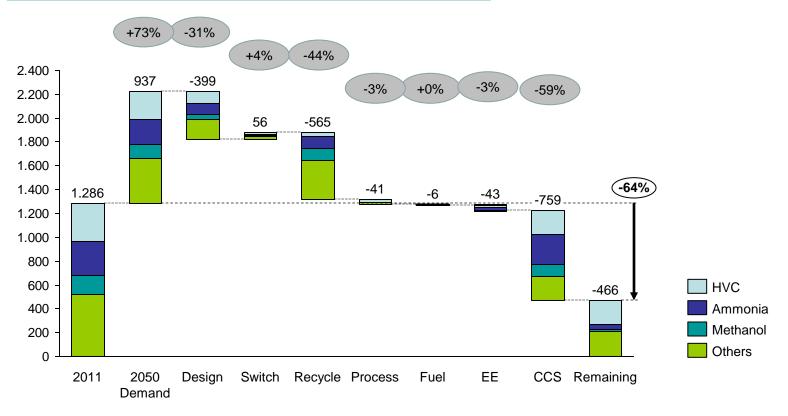

Percentage reductions are calculated vs the 2010 baseline

SOURCE: IEA ETP 2012, Global calculator model

Reduction potential Details for ambition level 3

Global **C**alculator

Chemicals production for ambition level 3 (M tons, % of 2011)


NOTE: (1) The population follows the average UN projection in all four trajectories (2)Assuming biomass emits, not including electricity related emissions SOURCE: IEA ETP 2012, Global calculator model

Young modulus applied to chemicals is very high leading to low material increase 141

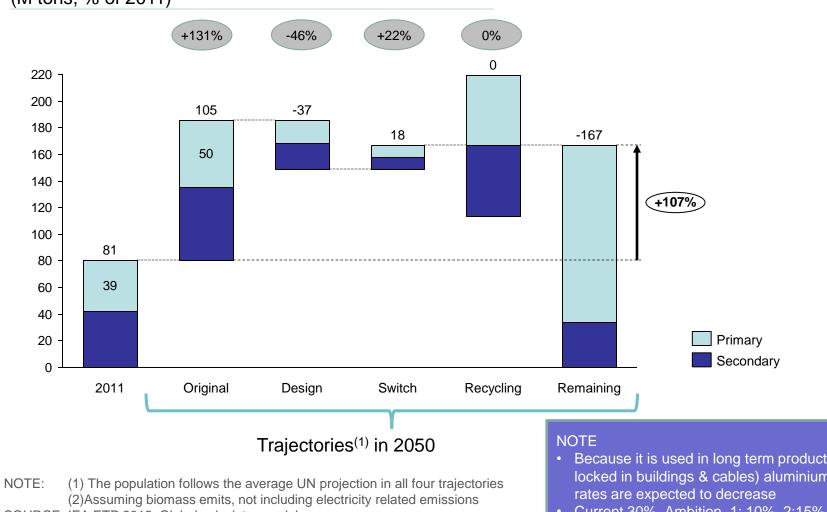
Reduction potential Details for ambition level 3 ⁽¹⁾

Global **C**alculator

Chemicals GHG emissions in 2050, for ambition level $3^{(1,2)}$, using different levers⁽³⁾ (MtCO₂e, % of 2010)

NOTES: (1) The population follows the average UN projection in all four trajectories

(2) Excluding biomass related reductions & electricity related emissions


(3) Other sectors are impacted by these transitions (e.g. additional emissions are created in the aluminium and plastics sectors) Percentage reductions are calculated vs the 2010 baseline

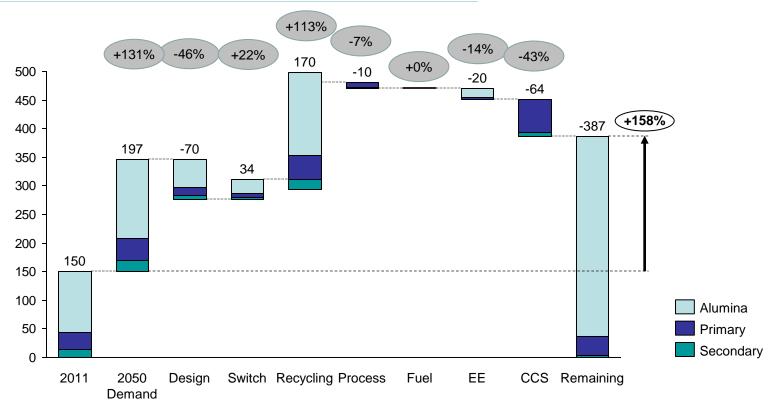
SOURCE: IEA ETP 2012, Global calculator model

Reduction potential Details for ambition level 3

Global **C**alculator

Aluminium production for ambition level 3 (M tons, % of 2011)

SOURCE: IEA ETP 2012, Global calculator model


· Because it is used in long term products (alumium locked in buildings & cables) aluminium recyclability

• Current 30%, Ambition 1: 10%, 2:15% 3: 20%, 4:25%

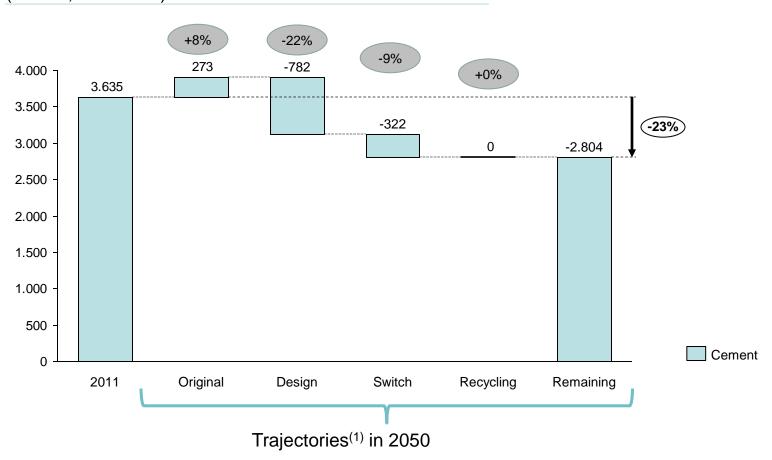
Reduction potential Details for ambition level 3 ⁽¹⁾

Global **C**alculator

Aluminium GHG emissions in 2050, for ambition level $3^{(1,2)}$, using different levers⁽³⁾ (MtCO₂e, % of 2010)

NOTES: (1) The population follows the average UN projection in all four trajectories

(2) Excluding biomass related reductions & electricity related emissions

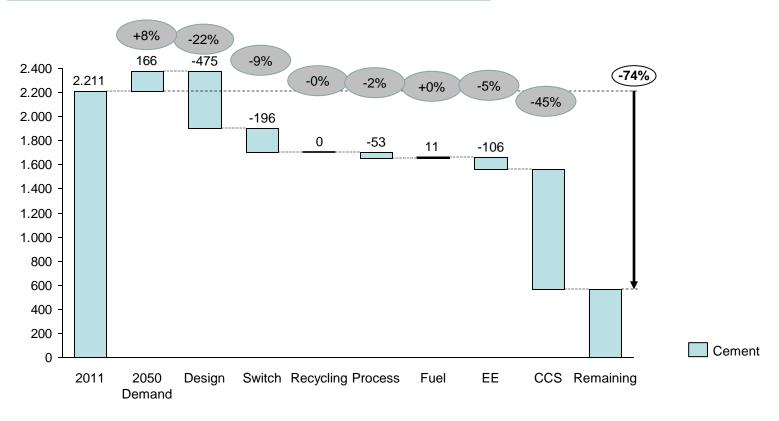

(3) Other sectors are impacted by these transitions (e.g. additional emissions are created in the aluminium and plastics sectors) Percentage reductions are calculated vs the 2010 baseline

SOURCE: IEA ETP 2012, Global calculator model

Reduction potential Details for ambition level 3

Global **C**alculator

Cement production for ambition level 3 (M tons, % of 2011)



NOTE: (1) The population follows the average UN projection in all four trajectories (2)Assuming biomass emits, not including electricity related emissions SOURCE: IEA ETP 2012, Global calculator model

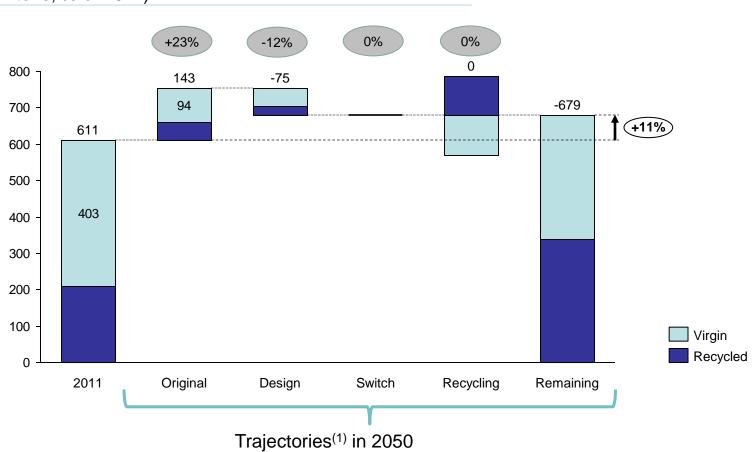
Reduction potential Details for ambition level 3 ⁽¹⁾

Global **C**alculator

Cement GHG emissions in 2050, for ambition level $3^{(1,2)}$, using different levers⁽³⁾ (MtCO₂e, % of 2010)

NOTES: (1) The population follows the average UN projection in all four trajectories

(2) Excluding biomass related reductions & electricity related emissions

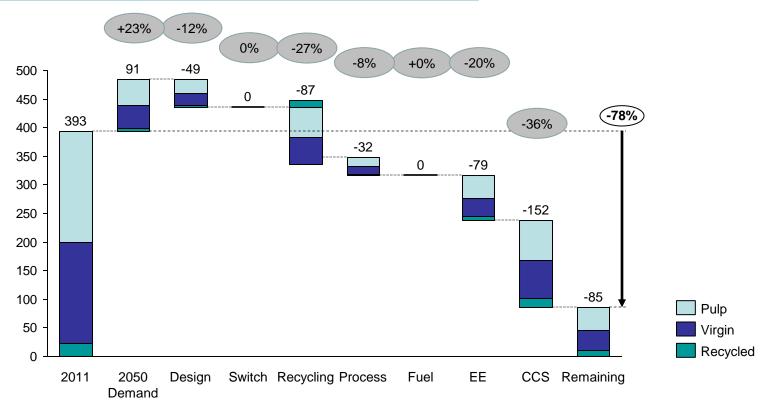

(3) Other sectors are impacted by these transitions (e.g. additional emissions are created in the aluminium and plastics sectors)

Percentage reductions are calculated vs the 2010 baseline SOURCE: IEA ETP 2012, Global calculator model

Reduction potential Details for ambition level 3

Global **C**alculator

Paper production for ambition level 3 (M tons, % of 2011)



NOTE: (1) The population follows the average UN projection in all four trajectories (2) Assuming biomass emits, not including electricity related emissions SOURCE: IEA ETP 2012, Global calculator model

Reduction potential Details for ambition level 3 ⁽¹⁾

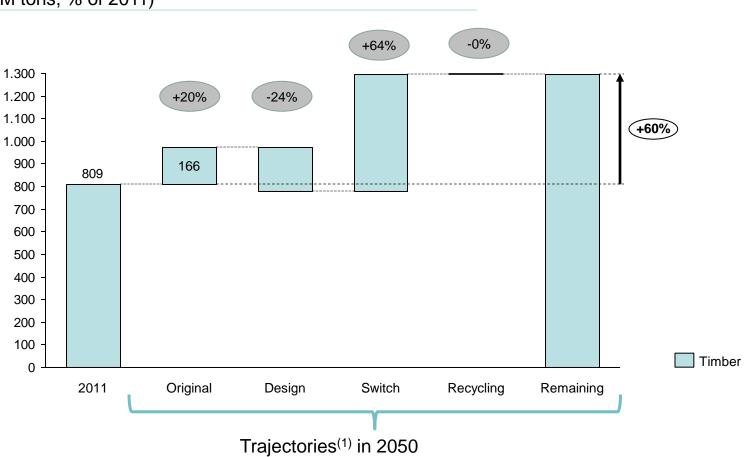
Global **C**alculator

Paper GHG emissions in 2050, for ambition level $3^{(1,2)}$, using different levers⁽³⁾ (MtCO₂e, % of 2010)

NOTES: (1) The population follows the average UN projection in all four trajectories

(2) Excluding biomass related reductions & electricity related emissions

(3) Other sectors are impacted by these transitions (e.g. additional emissions are created in the aluminium and plastics sectors)

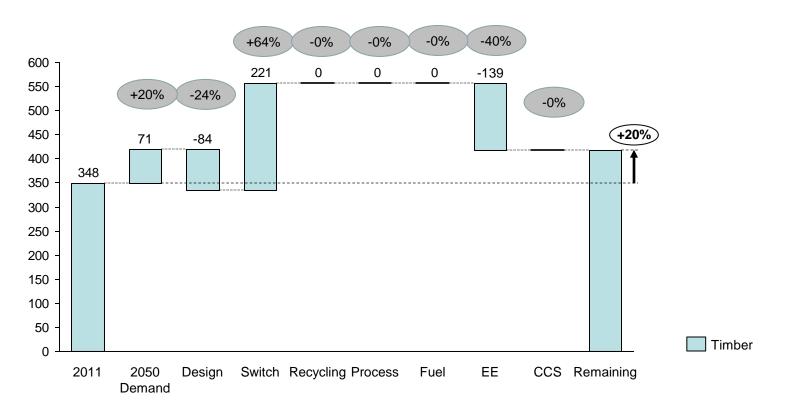

Percentage reductions are calculated vs the 2010 baseline

SOURCE: IEA ETP 2012, Global calculator model

Reduction potential Details for ambition level 3

Global **C**alculator

Timber production for ambition level 3 (M tons, % of 2011)



NOTE: (1) The population follows the average UN projection in all four trajectories (2)Assuming biomass emits, not including electricity related emissions SOURCE: IEA ETP 2012, Global calculator model

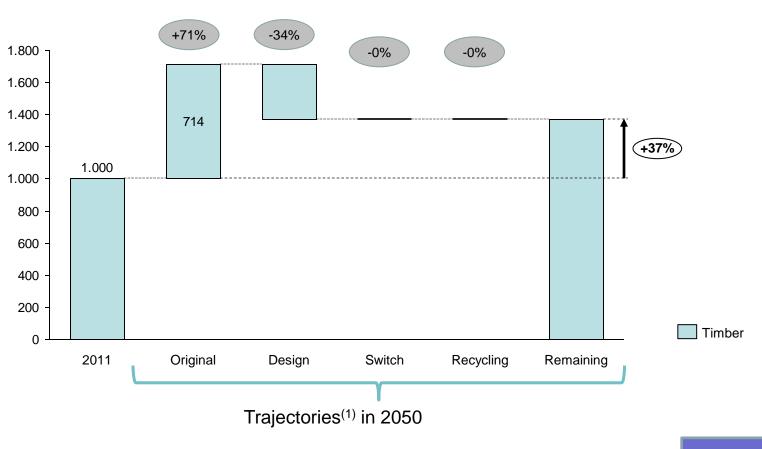
Reduction potential Details for ambition level 3 ⁽¹⁾

Global **C**alculator

Timber GHG emissions in 2050, for ambition level $3^{(1,2)}$, using different levers⁽³⁾ (MtCO₂e, % of 2010)

NOTES: (1) The population follows the average UN projection in all four trajectories

(2) Excluding biomass related reductions & electricity related emissions

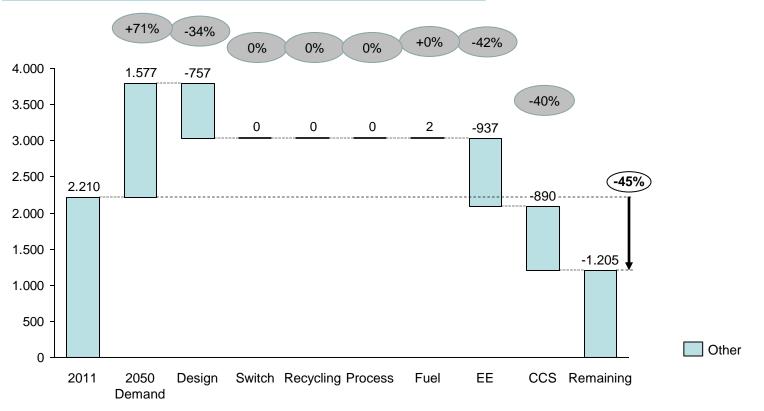

(3) Other sectors are impacted by these transitions (e.g. additional emissions are created in the aluminium and plastics sectors)

Percentage reductions are calculated vs the 2010 baseline SOURCE: IEA ETP 2012, Global calculator model

Reduction potential Details for ambition level 3

Global **C**alculator

Other production for ambition level 3 (M tons, % of 2011)


NOTE: (1) The population follows the average UN projection in all four trajectories (2)Assuming biomass emits, not including electricity related emissions SOURCE: IEA ETP 2012, Global calculator model

Production of other materials is normalized to 1000 in 2011

Reduction potential Details for ambition level 3 ⁽¹⁾

Global **C**alculator

Other GHG emissions in 2050, for ambition level $3^{(1,2)}$, using different levers⁽³⁾ (MtCO₂e, % of 2010)

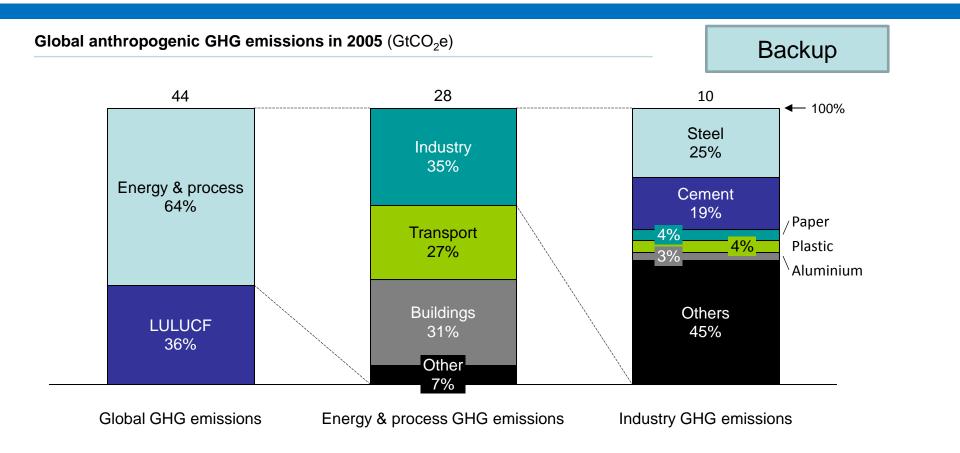
NOTES: (1) The population follows the average UN projection in all four trajectories

(2) Excluding biomass related reductions & electricity related emissions

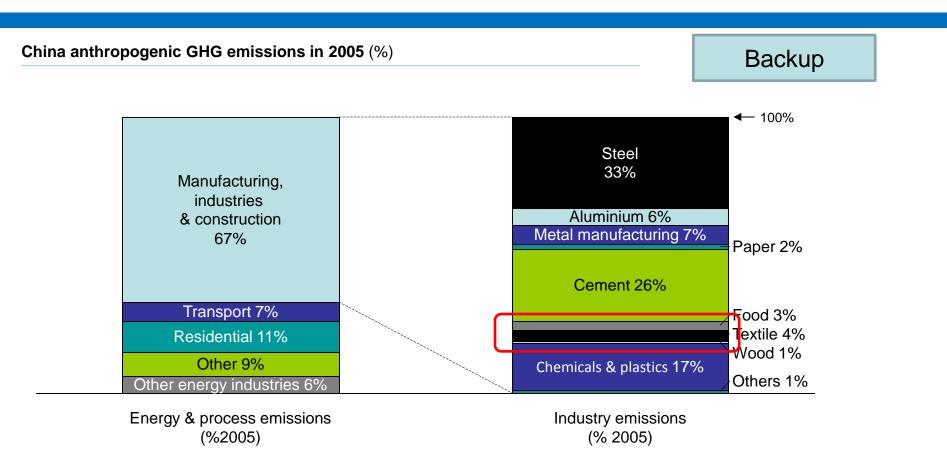
(3) Other sectors are impacted by these transitions (e.g. additional emissions are created in the aluminium and plastics sectors)

Percentage reductions are calculated vs the 2010 baseline SOURCE: IEA ETP 2012, Global calculator model

Backup


Industry specific water falls

Existing studies


Industry overview

Industry represents 22 % of total emissions and is made up of 5 main industries

Global **C**alculator

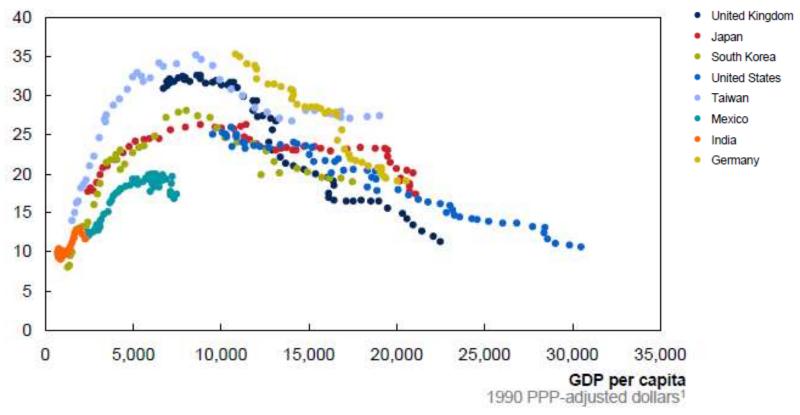
These 5 sectors are representative of the whole industry. Assembly from materials to finished products is not a major energy or emissions segment Global Calculator

Large developing economies are moving up in global manufacturing

Global **C**alculator

Top 15 manufacturers by share of global nominal manufacturing gross value added

1 South Korea ranked 25 in 1980.


2 In 2000, Indonesia ranked 20 and Russia ranked 21.

NOTE: Based on IHS Global Insight database sample of 75 economies, of which 28 are developed and 47 are developing. Manufacturing here is calculated top down from the IHS Global Insight aggregate; there might be discrepancy with bottom-up calculations elsewhere.

SOURCE: IHS Global Insight; McKinsey Global Institute analysis

Manufacturing's share of total employment fall as the economy grows wealthier, following an inverted U pattern Calculator

Manufacturing employment (% of total employment)

 Adjusted using the Geary-Khamis method to obtain a 1990 international dollar, a hypothetical currency unit that allows international comparisons adjusted for exchange rates and purchasing power parity (PPP).

SOURCE: GGDC 10-Sector Database: "Structural change and growth accelerations in Asia and Latin America: A new sectoral data set," Cliometrica, volume 3, Issue 2, 2009; McKinsey Global Institute analysis