Global Calculator Technical documentation

Manufacturing sector

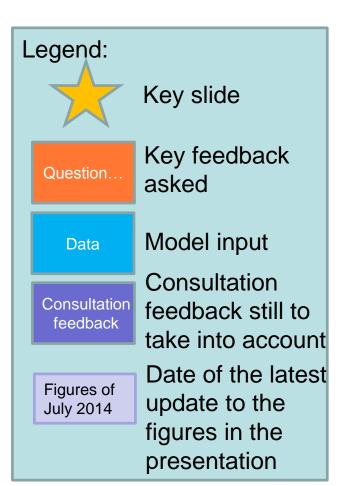
Technical documentation (Part 1/3 Links to material demand)

2015

Preliminary information on this technical documentation Global Calculator

- This technical documentation highlights the assumptions used in the manufacturing sector of the global calculator model. Introduction material generic to all sectors should be read prior going through this technical document.
- Most of this documentation has been performed to support workshop discussions on the technical choices in the manufacturing sector (in steel, cement, chemicals & across the sector as a whole)
- The global calculator aims at supporting the debate. You are more than welcome to share feedback on the calculator and on this documentation. We aim at continuously refining this analysis with your feedbacks. The expert feedback is incorporated in the analysis through various steps:
 - 1. It is flagged as feedback to include in the analysis
 - 2. The analysis documents are refined accordingly
 - 3. The model is updated and the model results are shown in the presentation

The dates of the figures used in the model are written Most of the figures in this document date from July 2014. Please note that some minor modifications have been placed in the model since July 2014. In case of differences between the presentation and the model, the model has the most recent estimates.


• All this documentation is open source ⁽¹⁾

NOTE: (1) The Global Calculator spreadsheet and supporting documentation is made available under (and subject to the terms of) the Open Government Licence (www.nationalarchives.gov.uk/doc/open-government-licence/version/2/). The web tool is published under (and subject to the terms of) the Creative Commons Licence (attribution, non-commercial, see: http://creativecommons.org/licenses/by-nc/4.0/legalcode).

2

Legend associated with the consulting process

• Several slides in this technical documentation document are tagged to reflect the stakeholder consultations

Global

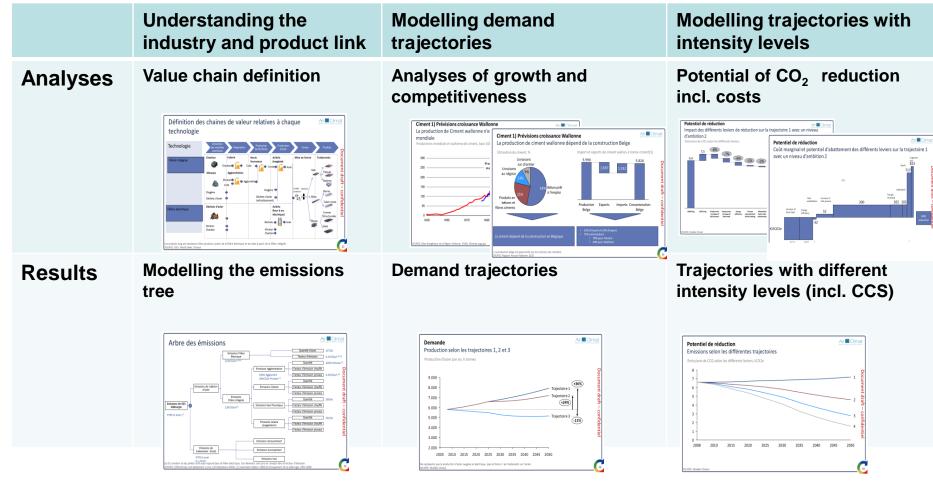
Calculator

Agenda

Global **C**alculator

Introduction to the global calculator

Model structure

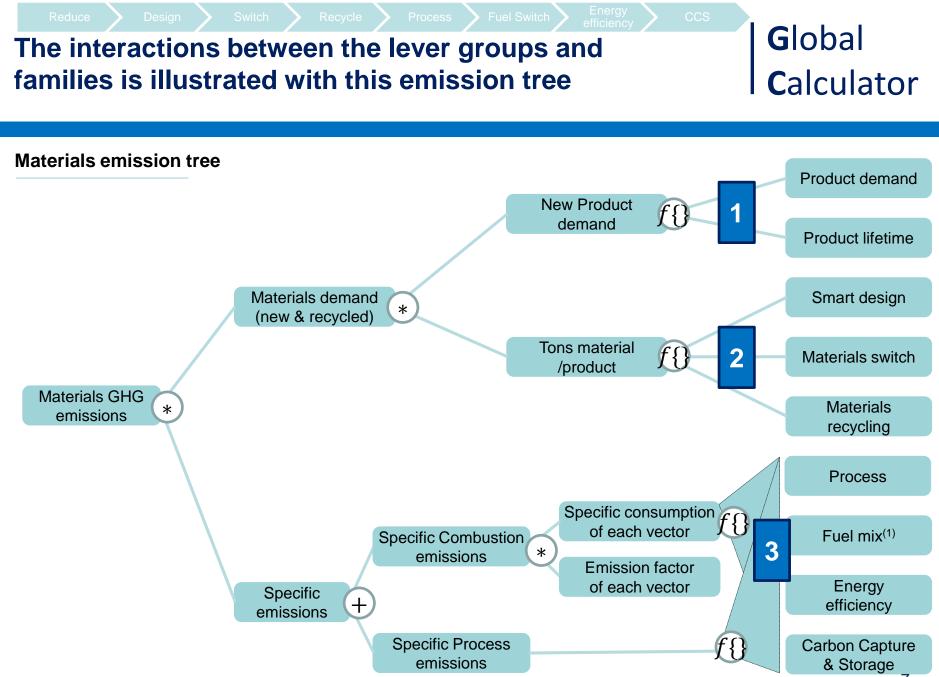

Expert & Literature review

Historical energy evolution and link to materials demand

To model the manufacturing sector a detailed analysis has been performed in each industrial sector

Global **C**alculator

Methodology


Manufacturing is modelled through 3 main lever groups, split into 8 lever families

	Lever groups		Lever families	L	ever descriptions
1	Product demand	1.	Reduce demand ⁽¹⁾ & increase lifetime ⁽²⁾	•	End consumer demand of products Solutions for sharing the product amongst different users
2	Material demand per product	2. 3. 4.	Smart design Materials switch Materials recycling	•	Amount & type of materials required to supply the products (includes new product types and substitution materials) Materials recycling potential
3	Carbon intensity of material production	5. 6. 7. 8.	Process change Fuel switch Energy efficiency Carbon capture and storage	•	Production CO ₂ intensity of various improvements levers in each industry (~60improvements types)

NOTES: (1) These levers don't apply in the materials analysis when the product demand is defined by the other sectors

(2) For consumer goods: cars & household goods

NOTE: (1) The fuel mix does not influence the specific process emissions

7

Reduction potential Modelling choices on Scope

Global **C**alculator

Impact in Product life is addressed by the other sectors	 To reduce overall emissions, we must take an overall perspective including both the production and the use phase For example steels produce efficient transformers and motors enabling to reduce more CO₂ emissions than what was required during the production phase⁽¹⁾
Use of by products is accounted for in the other sectors	 The material production can result in the generation of by-products that reduce CO₂ emissions by substituting natural resources in other industries For example, blast furnace slag is used by the cement industry allowing it to reduce its CO₂ emissions significantly ⁽¹⁾

- Taking these dimensions into account typically provides a view on the material impact as a CO₂ mitigator
- Applied to steelmaking and steel use in Europe, such an approach shows that steel can save six times as much CO₂ where it is used than is emitted in production

NOTES: Global calculator assumptions

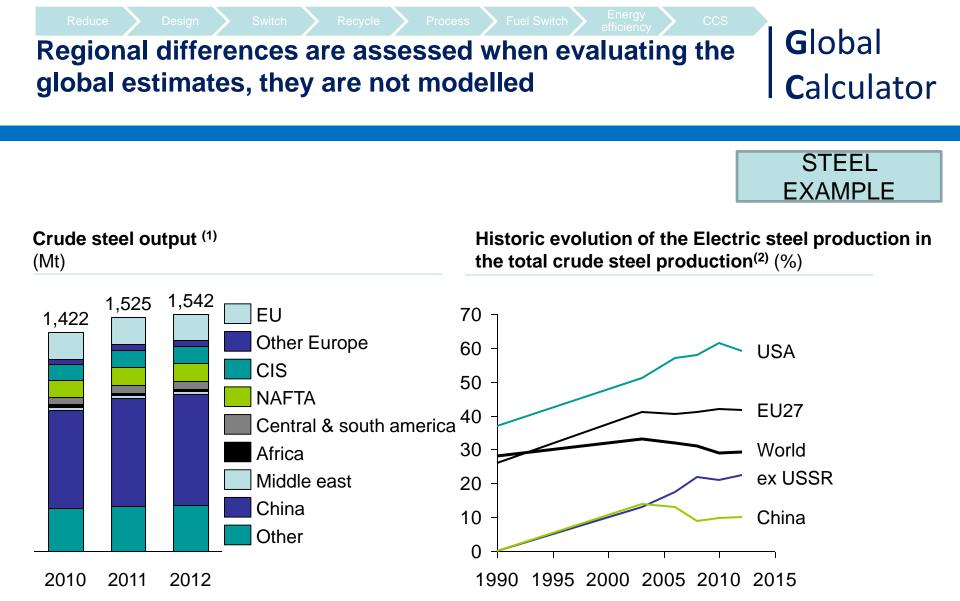
SOURCES:

(1) Worldsteel, steel's contribbution to a low carbon future

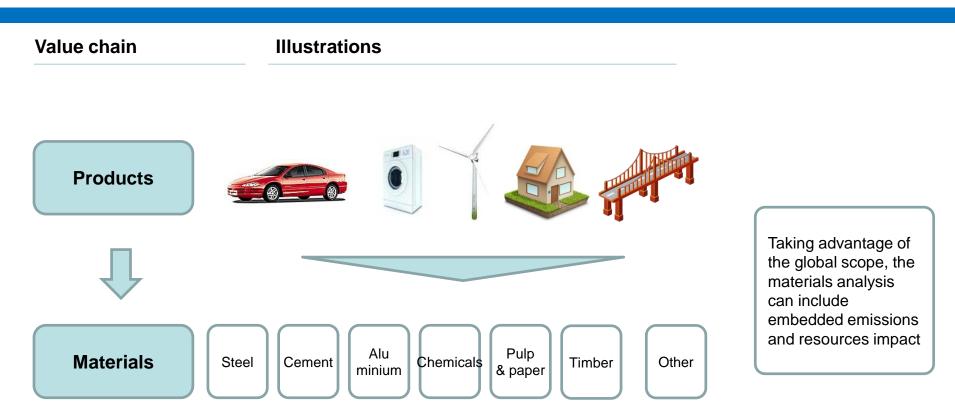
(2) Eurofer A steel Roadmap for a low carbon Europe 2050 (1013)

ReduceDesignSwitchRecycleProcessFuel SwitchEnergy
efficiencyCCSMaterial demand / product: Design, Switch & RecyclingCCSGlobalLevers are assessed in each industryCCSCCS

List of actions & levers assessed


Indust	ry groups	Design	Switch	Recycling
Steel		Product DesignHigh strength steel	 In vehicles : To aluminium & to plastics (fibres) In buildings/Infrastructure : to timber 	 Product recycling % scrap based (for each various technologies exist)
Chemi cals	All	Product design	• /	Product recyclingMaterial recycling
	High value		 Substitutes steel, aluminium & cement in vehicles & buildings/infrastructure 	Green chemistry
	Ammonia	 Fertilizers composition 	• /	
	Methanol		• /	
	Other	Green chemistry	• /	
Aluminiu	ım	Product design	In Planes: To plastic (fibres)	Product recyclingMaterial recycling
Cement		Product design	 In buildings/Infr. : To plastics & to timber 	Composed/metallurgical cement
Pulp & p	aper			More recycled paperOther cellulose sourcesBio-refineries
Timber		Product design	Switch from steel &cement	

List of actions & levers assessed

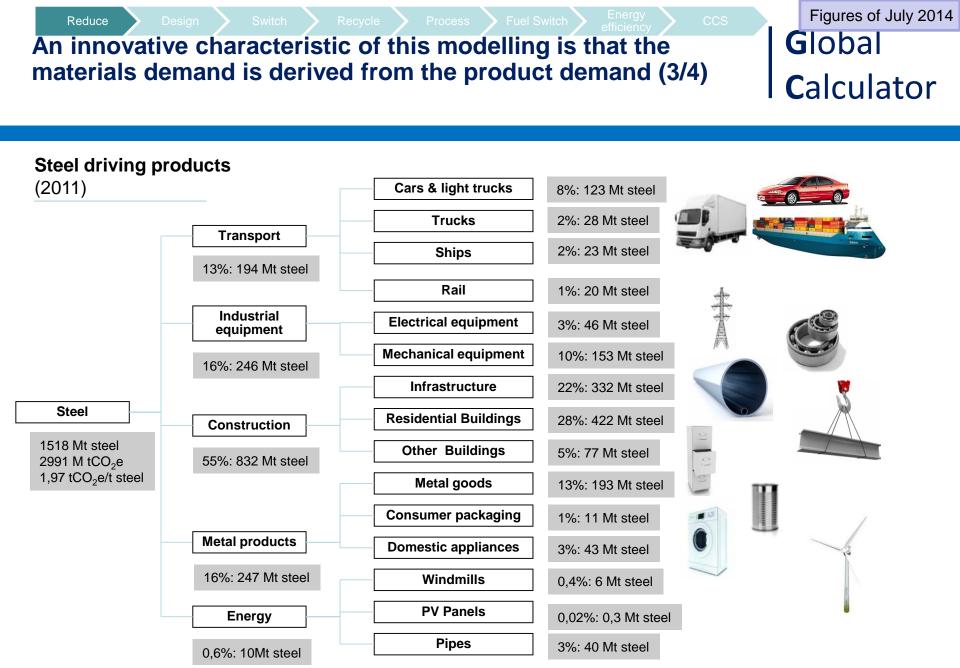

Industr	y groups	Process improvements	Alternative fuels	Efficiency	CCS
Steel		 Carbon material reduction Portion of Classic BOF/ Top gas recycling & Hisarna/ EAF DRI/ EAF scrap Smelt reduction, Hydrogen, Electrolysis 	 Coke to gas injection Coal PCI to biomass 	 Material efficiency Energy efficiency CHP 	• CCS
Chemi cals	All	Process intensificationCatalyst optimization	Oil to gas	 Clustering and sustainable integration CHP 	• CCS
	High value	 Included in energy efficiency 		Energy efficiency	• CCS
	Ammonia	 Included in energy efficiency 		Energy efficiency	• CCS
	Methanol			Energy efficiency	• CCS
	Other	 Included in energy efficiency Selective catalytic reduction 	Hydrogen production by electrolysisNatural gas or biomass	 Energy efficiency Switch Mercury to membrane 	• CCS
Aluminiu	m	 Included in energy efficiency 	Gas injection	Material efficiencyEnergy efficiency	• CCS
Cement		Dry process	 Coal & oil to waste & biomass 	Energy efficiencyCHP /heat recovery	• CCS
Pulp & pa	aper	Black liquor gasificationDrying innovation	Coal & oil to gasCoal & oil to biomass	Energy efficiencyCHP	• CCS
Timber		• /	• /	• /	• /

Global

Calculator

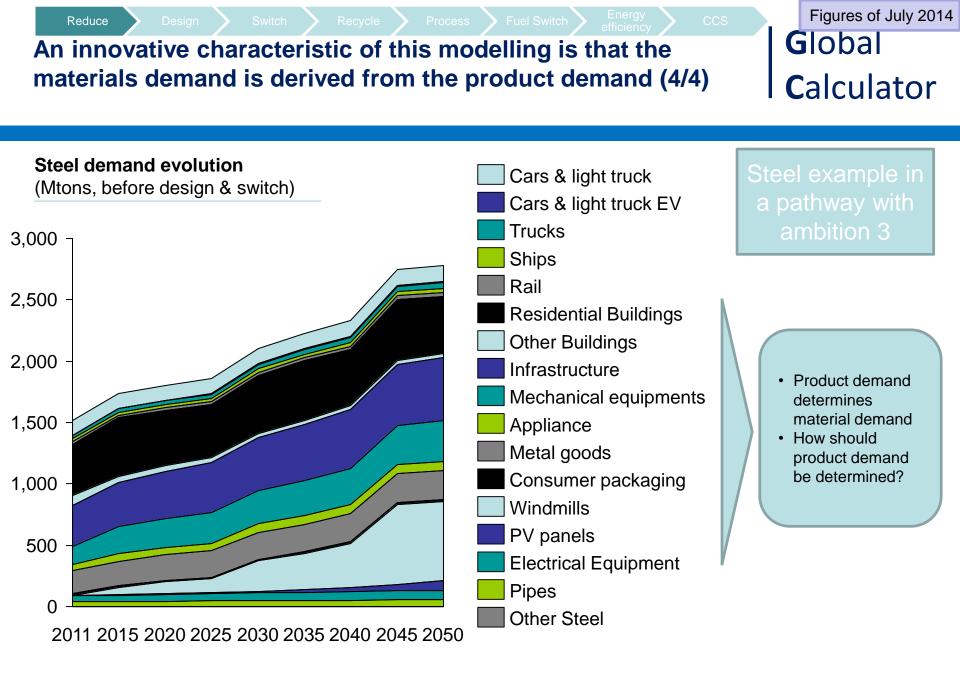
An innovative characteristic of this modelling is that the materials demand is derived from the product demand (2/4)

Selection of products and materials and resources (excluding energy resources)


			Out of scope
Sector	Products	Materials	Resources
	Nuclear & Fossil plants	➔ Infrastructures	/
	Wind turbines	Steel, Aluminium	Iron ore, bauxite,
Energy	PV	Chemicals, Steel & Aluminium	Hydrocarbons, rare metals
	Transmission, distribution networks	Steel, Aluminium	Iron ore, bauxite
	Other	/	/
	Infrastructure, Buildings	Steel, Aluminium, cement, timber	Iron ore, bauxite, biomass, clinker substitutes
Infrastructu	Industrial & mechanical equipment	Steel, Aluminium	Iron ore, bauxite
res	Roads	Cement, Asphalt	clinker substitutes
	Rail	➔ Infrastructures	/
	CCS pipes	Steel	Iron ore
	Other	/	/
	Vehicles (cars, light trucks, truck, ships)	Steel, Aluminium, chemicals	Iron ore, bauxite, Lithium, fossil fuels
Consumer goods	Metal goods, consumer packaging, domestic appliances, clothing	Chemicals, steel, aluminium	Iron ore, bauxite, metals, hydrocarbons
	Other	/	/
Other	Other	/	/

Comments

 Only significant relationships will be kept so to reduce complexity and feedback loops, other are skipped


Global Calculator

- Skipped examples
 - Wind turbines represent only 5% of the aluminium demand
 - asphalt is less energy intensive, it is not a major source of GHG emissions, excluding aggregates, it overlaps with cement and plastics

NOTES: (1)There are other products, these have been diluted amongst the existing categories (2) Half the "Construction" steel is used for rebar with cement

SOURCES: With both eyes open, Copyright 2012 UIT Cambridge Ltd, adapted by Climact to 2011 figures

Most product demand is defined by each sector's activity, Some products are driven by the "Product demand" lever,

Reduce

Key drivers of demand to be challenged

Global

Calculator

Sector	Products	Model Technologies (grouped)	Demand driven by	Rationale
Transport	Car & Light trucks	Bike, Cars, Motorbike	By transport sector	1
	Trucks	Trucks, Bus		1
	Rail	Trains		/
	Airplanes	Planes		/
	Trucks & ships	Trucks, Ships		/
	Infrastructure ⁽¹⁾	Roads		/
	Batteries	Electric vehicles		/
Buildings	Buildings	Residential/Non-residential	By buildings sector	/
	Infrastructure ⁽¹⁾	Bridges, Roads, Airports	By transport sector	to avoid iteration loop and have it defined in one place
	Mechanical equipment's	Cooker, HVAC	By Buildings sector	/
	Appliances	Various appliances, stoves, lighting		/
Consumer	Paper	Print, graphic	By "Product demand " lever	/
goods	Metal goods	Consumer products	By "Product demand " lever	/
	Consumer packaging	Consumer packaging	By "Product demand " lever	/
	Fertilizers	Ammonia production	By Population	By Land & food sector in v2
Energy/	Wind	Onshore, offshore	By energy sector	/
Electricity	PV	Solar PV		/
	Electrical Equipements	Transformers	Skipped	to avoid iteration loop
	Electrical cables	Transmition lines		
	Pipes			Not modelled in v1
	Infrastructure ⁽¹⁾	Energy Plants& network	By transport sector	to avoid iteration loop and have it defined in one place
Industry	Infrastructure ⁽¹⁾	Plants of each kind of material	By transport sector	to avoid iteration loop and have it defined in one place
	Paper	Paper	By "Product demand " lever	1

NOTE: (1) Infrastructure is present in three sectors: Energy, Industry and Transport. It's demand evolution is currently following the transport demand only.

Cost ranges are modelled for each lever along the capex, fuel & other opex dimensions

Global **C**alculator

Rationale on Lever costing

Baseline	 A base cost (capital, fuel & other opex) is provided to estimate the manufacturing costs prior the application of the various levers
Process improvements	 When these are modelled as a change to a different technology (e.g. a switch from Oxygen to Oxygen Hisarna steel), they are estimated based on costs mentioned in the literature (and detailed in the relative technical slides) When these are modelled as an energy efficiency improvement, the capex are associated to 4-5-6 years payback on the energy savings
Alternative fuels	 Only the price of fuels is taken into account for this lever
Energy efficiency	 The capex are associated to 4-5-6 years payback on the energy savings
CCS costs	• The capex are taken from the IEA estimates and the fuel costs are derived from the additional electricity consumption estimated per sector

Background on the ranges

- "High", "Point" & "Low" cost are provided for each lever
- Costs are provided with high uncertainties for several reasons:
 - The costs obtained through the various sources are often obtained through different methodologies
 - Costs estimates are often not available or confidential for the industrial players

Introduction to the global calculator

Model structure

Expert & Literature review

Historical energy evolution and link to materials demand

The following stakeholders have been provided with an opportunity to review the cross sector assumptions ⁽¹⁾

Federations and organisations

WBCSD, Cement sustainability Initiative

Roland Hunziker

Worldsteel Association

Henk Reimink, Clare Broadbent

CEFIC

Peter Botschek, Isabelle Chaput (alumni) CEPI

Marco Mensink

Zero Emissions Platform (ZEP)

- Gert-Jan van der Panne
 European Wood Federation (CEI Bois)
 Institute of Industrial perspective (alumni)
- Julia Reinaud

World Aluminium

Chris Bayliss

Legend

Presence at workshop or later

Academic, consultancies & research groups

Global

Calculator

- Fraunhofer institute, Marlene Arens
- Steel VDEh Marten Sprecher
- Tsinghua University
- **UK Engineering** and Physical Sciences Research Council (EPSRC), author of With both eyes open, Jonathan M Cullen
- LBNL (China Energy Group)
- BEE (India)
- TERI

Companies in other sectors

- **Dow** Michael Mazor
- Vinci
- Toyota
- Bombardier
- GE

NGOs & cooperation agencies

- Greenpeace, Jan Vande Putte
 WWF
- GIZ

The following stakeholders will be provided with an opportunity to review the steel assumptions ⁽¹⁾

Global **C**alculator

Iron & steel specific

Worldsteel Association

- Clare Broadbent, Eldar Askerov European Steel Technology Platform
- Jean-Pierre Birat

Eurofer

Jean Theo Ghenda

Steel Institute VDEh

- Marten Sprecher
- Fraunhofer institute
- 😑 Marlene Arens

ArcelorMittal

• Jean-Sebastien Thomas, Karl Buttiens Tata Steel

All sectors (interaction planned later)

Think tanks

- WBCSD
- GIZ

Academic

- Tsinghua University
- UK Engineering and Physical Sciences Research Council (EPSRC), author of With both eyes open, Jonathan M Cullen
- LBNL (China Energy Group)
- NGOs
- Greenpeace
- WWF

Legend

Workshop presence

22

Main sources used for the steel analysis

Organisation	Source
World Steel Association	 World Steel in Figures 2013 Steel Statistical year book 2013 Sustainable steel: Policy and indicators 2013 Steel's Contribution to a Low Carbon Future The three Rs of sustainable steel (Reduce, Reuse, Recycle), 2010
Eurofer	 Low Carbon Steel Roadmap 2050 (IEA involved, led by BCG and German Steel Institute)
EU JRC	 Prospective Scenarios on Energy Efficiency and CO2 Emissions in the EU Iron & Steel Industry
UN work	
ULCOS	Official website
Midrex	• MidrexStats2011-6.7.12
IEA	 2013 Key world energy statistics 2012 technology perspectives
Cambridge	With both eyes open
	 NTNU & Cambridge University (2014 04 10 International Materials Education Symposium)
US Environmental Protection Agency	 Available and emerging technologies for reducing greenhouse gas emissions from the iron and steel industry. North Carolina: US EPA., 2010
Previous consultations	• Similar roadmaps performed in Belgium, UK, Algeria, the Balkans & India

The following stakeholders have been provided with an opportunity to review the steel assumption

Global **C**alculator

Chemicals specific experts

International Council of Chemical associations

Rachelina Baio

CEFIC (European Chemical Industry Council

- Peter Botschek
- William Garcia, Isabelle Chaput (cross sectoral) CPCIF (China Petroleum and Chemical Industry Federation)
- Dr. Ye Jianhui

Japan PetroChemical Industry Association Dechema

Alexis Bazzanella, Florian Ausfelder

Steel Institute VDEh

Marten Sprecher

BASF

Susan Kuschel, Charlene Wall-Warren

Dow Chemicals

Mark Weick, Keith (K) Kenebrew, Michael (MH) Mazor

All sectors (interaction planned later)

Think tanks

- WBCSD
- GIZ

Academic

- Tsinghua University
- UK Engineering and Physical Sciences Research Council (EPSRC), author of With both eyes open, Jonathan M Cullen
- LBNL (China Energy Group)
 NGOs
- Greenpeace
- WWF

Workshop presence

Main sources used for the Chemicals analysis

Organisation	Source
Cambridge	With both eyes open
IEA	 Energy Technology Perspectives 2012, Pathways to a clean energy system Chemical and Petrochemical Sector – Potential of Best Practice Technology and Other Measures for Improving Efficiency (IEA, 2009) Summary report
ICCA	 Technology Roadmap: Energy and GHG Reductions in the Chemical Industry via Catalytic Processes (IEA, ICCA, Dechema) The role of the chemical industry in achieving targets of IEA roadmaps on biofuel and bioenergy (2011)(ICCA and SRI International) Building Technology Roadmap: The Chemical Industry's Contribution to Energy and GHG Savings in Residential and Commercial Construction Buildings roadmaps (2012) (ICCA)
CEFIC	 European chemistry for growth, Unlocking a competitive, low carbon and energy efficient future (2013)
Plastics Europe	Plastics- the facts 2013
Utrecht University	 Ren, T. 2009. Petrochemicals from Oil, Natural gas, Coal and Biomass: Energy Use, Economics and Innovation. PhD
McKinsey	 McKinsey cost abatement curves v2.1 Manufacturing the future: the next era of growth and innovation (2012)
Ecofys	SERPECC studies
European Climate change Foundation	 Europe's low carbon transition: Understanding the challenges and opportunities for the chemical sector (2014)
Other	 Chemical Industry of the Future: New Process Chemistry Technology Roadmap, July 2001 Catalysis - a key technology for sustainable growth"
Previous consultations	Similar roadmaps performed in Belgium, UK, Algeria, the Balkans & India

Main sources used for the Aluminium analysis

Organisation	Source
World Aluminium	 A Review of the Global Aluminium Industry: 1972-2012 (2013) Aluminium Intensive Electric Vehicle Report (2012) Aluminium for Future Generations Sustainability Update: 2010 data (2011) Current and (global) scenarios for metal flow, inc recycling: www.world- aluminium.org/publications/tagged/mass%20flow%20model/ building: http://www.alueurope.eu/publications-building/, greenbuilding.world- aluminium.org/home.html transport: transport.world-aluminium.org/home.html , www.drivealuminum.org, www.alueurope.eu/publications-transport , www.alueurope.eu/publications-automotive recycling: recycling.world-aluminium.org/ , www.thealuminiumstory.com
European Aluminium Association	• www.alueurope.eu
Cambridge	With both eyes open
IEA	 Energy Technology Perspectives 2012, Pathways to a clean energy system ETP 2014 data
McKinsey	McKinsey cost abatement curves v2.1
Ecofys	SERPECC studies
Previous consultations	Similar roadmaps performed in Belgium, UK, Algeria, the Balkans & India

The following stakeholders have been provided with an opportunity to review the cement assumptions ⁽¹⁾

Global **C**alculator

Cement specific

WBCSD, Cement sustainability Initiative

Roland Hunziker

US Portland cement association

David D. Shepherd

Cembureau:

- Alessandro Sciamarelli
- Claude Lorea
- Jessica Johnson,

Japan Cement Association Cement, Concrete & Aggregates Australia Lafarge

OMr. Vincent Mages Italcementi

Ms. Manuela Ojan **Cimpor**

Mr. Paulo Rocha

All sectors (interaction planned later)

Think tanks

- WBCSD
- GIZ

Academic

- Tsinghua University
- UK Engineering and Physical Sciences Research Council (EPSRC), author of With both eyes open, Jonathan M Cullen
- Fraunhofer institute
- LBNL (China Energy Group)
 NGOs
- Greenpeace
- WWF

Legend

Workshop presence

Main sources used for the Cement analysis

Organisation	Source
Cambridge	With both eyes open
IEA	 Energy Technology Perspectives 2012, Pathways to a clean energy system ETP 2014 data
International Cement Review	 The global cement report (6th edition) Insights from the global cement report (10th edition) (2013)
IEA-WBCSD	2050 Cement Technology Roadmap (2009)
Carbon War Room	Cement Report 1 (2011)
Mineral product association	UK cement roadmap (2013)
GNR	Global Cement Database on CO ₂ and Energy Information
European Cement Research academy	Technical documentation
Cembureau	the role of cement in the 2050 low carbon economy
IEA	 GHG 2008. CO2 capture in the cement industry. Report 2008/3. Cheltenham, UK: International Energy Agency Greenhouse Gas R&D Programme
Previous consultations	• Similar roadmaps performed in Belgium, UK, Algeria, the Balkans & India

Main sources used for the Paper analysis

Organisation	Source
Cambridge	With both eyes open
IEA	Energy Technology Perspectives 2012, Pathways to a clean energy system
CEPI	 roadmap Two team project report (presents 8 breakthrough technologies)
Carbon Trust	 Carbon Trust, 2011. Industrial Energy Efficiency Accelerator - Guide to the paper sector (CTG059). London
FAO	Statistics on link between product demand and materials demand
McKinsey	McKinsey cost abatement curves v2.1
Ecofys	SERPECC studies
Previous consultations	• Similar roadmaps performed in Belgium, UK, Algeria, the Balkans & India

Main sources used for the Timber analysis

Organisation	Source
Cambridge	With both eyes open
IEA	Energy Technology Perspectives 2012, Pathways to a clean energy system
CEI Bois	 Wood in carbon efficient constructions: Tools, methods & applications/ Lutter contre le changement climatique: utiliser le bois
Previous consultations	Similar roadmaps performed in Belgium, UK, Algeria, the Balkans & India

Main sources used for the CCS specifics

Organisation	Source
IEA	 Energy Technology Perspectives 2012, Pathways to a clean energy system IEA: Technology Roadmap: Carbon Capture and Storage (2013) IEA, UNIDO : Technology Roadmap Carbon Capture and Storage in Industrial Applications (2011)
Imperial Grantham	Briefing paper Carbon Capture Technology (Nov 2010)
ZEP	Application of CCS in EU energy intensive industries
McKinsey	McKinsey cost abatement curves v2.1
Ecofys	SERPECC studies
Previous consultations	Similar roadmaps performed in Belgium, UK, Algeria, the Balkans & India

Resources availability Most referred to analysis has been taken into account to make this model

Global **C**alculator

Main sources used for the Resources specifics

Organisation	Source
IEA	US geological survey (USGS)
Cambridge	With both eyes open
Bath University	Construction materials database; inventory of carbon energy. Bath database

Agenda

Global **C**alculator

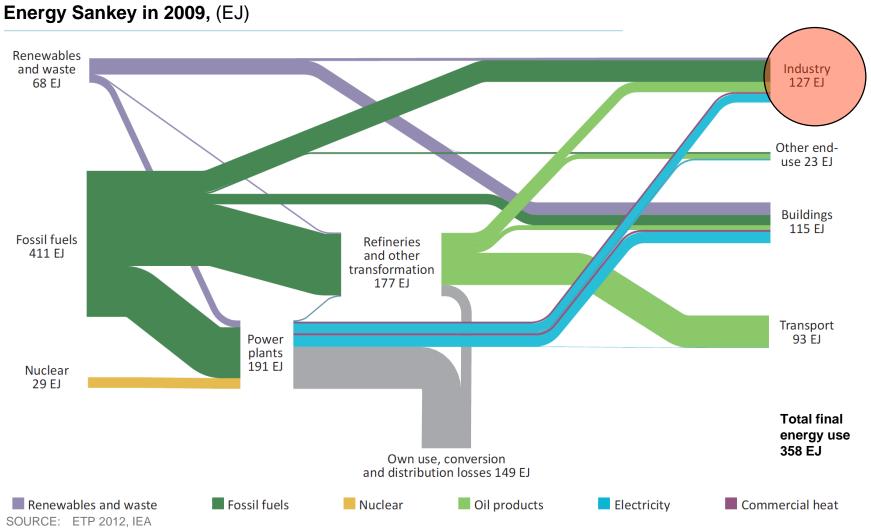
Introduction to the global calculator

Historical energy evolution and link to materials demand

Manufacturing

Steel

Chemicals

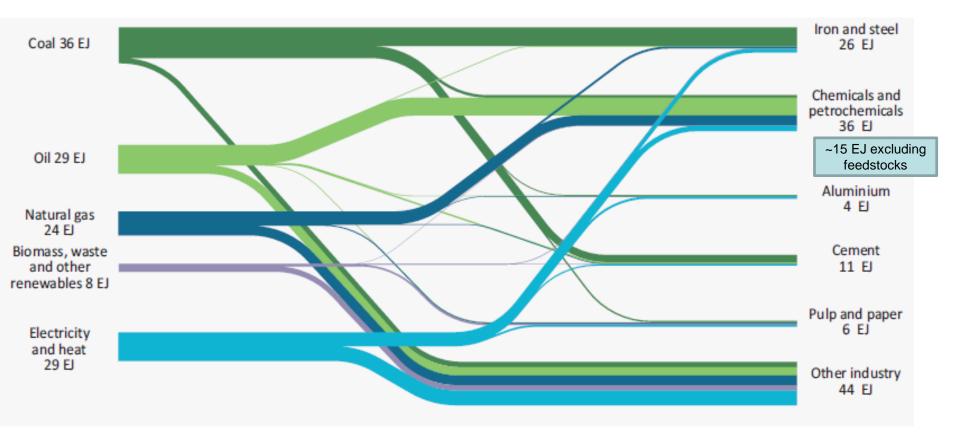

Aluminium

Cement

Paper & timber

Industry is ~35% of final energy use, it mainly relies on fossil fuels

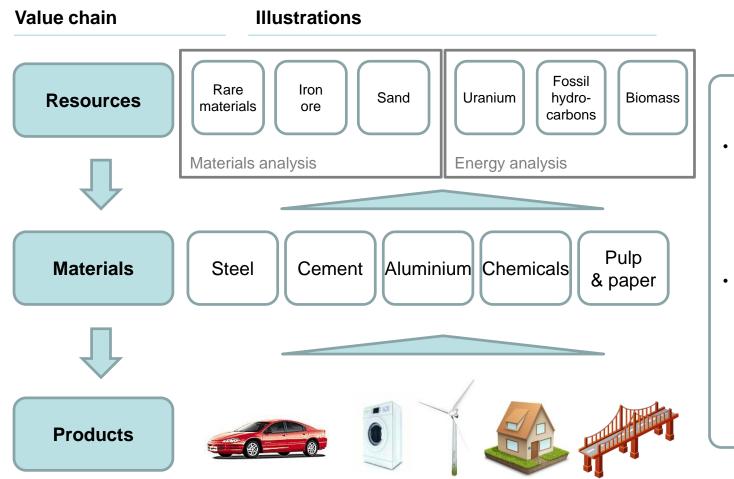
Global **C**alculator



NOTES: (1) Worldsteel recently raised the steel specific energy consumptions, this is not yet reflected by this picture (2) Energy consumption is dominated by fossil fuels in all sectors

Patterns differ but most industries heavily depend on fossil fuels. Other industries are more electrified

Global **C**alculator


Energy Sankey in 2009 for the industry , (EJ)

SOURCE: ETP 2012, IEA

NOTES: (1) Worldsteel recently raised the steel specific energy consumptions, this is not yet taken into account in this picture (2) Energy consumption is dominated by fossil fuels in all sectors

REMINDER : For manufacturing, the analysis starts from the demand for products and derives material production and resource use

Taking advantage of the global scope, the materials analysis can include embedded emissions and resources impact

Global Calculator

 Part of the product demand is a model input, another is generated by the requirements of other sectors

Agenda

Global **C**alculator

Introduction to the global calculator

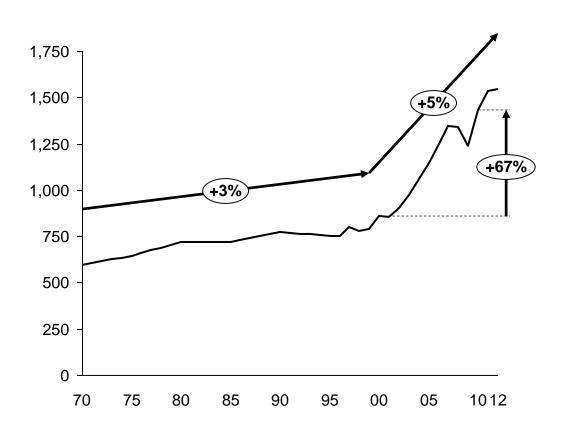
Historical energy evolution and link to materials demand

Manufacturing

Steel

Chemicals

Aluminium

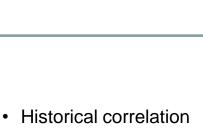

Cement

Paper & timber

Historic steel demand evolution

Global **C**alculator

World crude steel production (M tons)

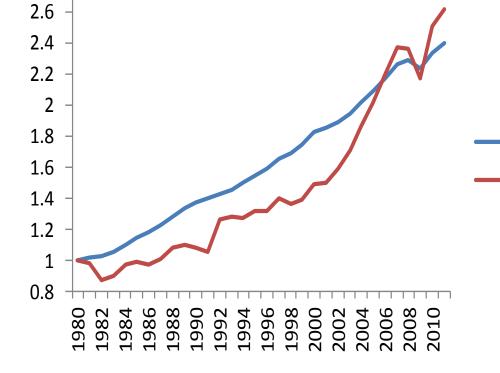


- Production stayed nearly constant between 1975 and 2000, it grew 67% between 2000 and 2010
- World crude steel production fell between 2007 & 2009 mostly in OECD economies, where production sank by 25%
- Led by China and India, steel production in Asia continued to climb, although at a slower place ⁽¹⁾

At global level, steel production is correlated to GDP

Global **C**alculator

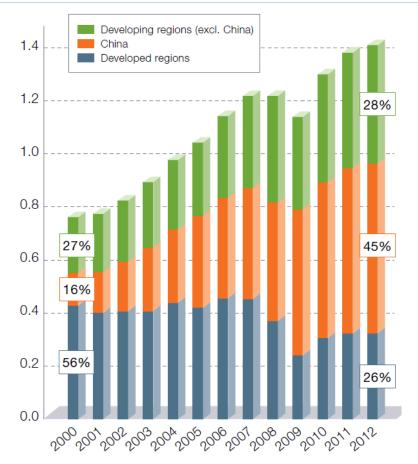
World steel production and world GDP evolution (units production, GDP indexed on 1980 steel production level)



BACKUP

- Historical correlation between steel production and GDP suggest a long term 1-1 relationship
- Global demand growth is driven by emerging markets

GDP


Steel

2.8

China is now using close to half of the world steel

Evolution of world apparent steel use per region⁽²⁾ (billion tons finished steel products)

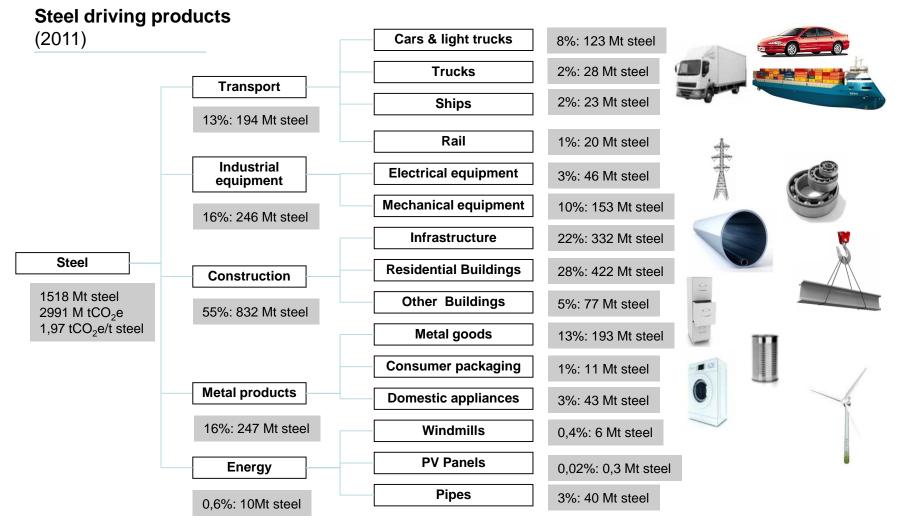
BACKUP

Global

Calculator

- We expect continuing growth in the steel production, driven by developing areas⁽³⁾, where steel will be vital in raising the welfare of developing societies. In these regions, more than 60% of steel consumption will be used to create new infrastructure⁽²⁾
- The five most important producers (China, Japan, the United States, Russia and India) accounted for over 65% of total global crude steel production in 2010⁽¹⁾

Steel offers unique combination of characteristics: Toughness, Thermal expansion, Corrosion resistance, Electrical resistance, Ductility, and Availability


Steel materials characteristics (including various alloys and treatments)

Solid	Steel is often used to make strong stiff (non-flexible) structures It is tough and crack don't appear easily (vs ceramics) It can also be used to make cables (only resistant in traction)
Stable	Low thermal expansion (similar to cement)
Durable	High melting temperature and can be protected from corrosion
Ductile/ Recyclable	Steel can be made to change shape without cracking. Through melting, steel can theoretically be recycled an infinite number of times
Affordable/ Available	Steel is relatively cheap, and there are large reserves of iron ore. It tends to be more expensive than some other durable materials (e.g. cement and timber)
Conductor	Can be used to conduct heat and electricity (less than several other metals such as aluminium or copper)

Half the construction steel is for rebar with cement, the 2 materials complement each other (cement protects from corrosion and steel is strong in traction)

Iron & steel Demand driving products

NOTES: (1)There are other products, these have been diluted amongst the existing categories (2) Half the "Construction" steel is used for rebar with cement

SOURCES: With both eyes open, Copyright 2012 UIT Cambridge Ltd, adapted by Climact to 2011 figures

Iron & Steel Materials demand is driven by the product demand

Technolog Products	gies &	Amounts (units, 2011)	(t steel/product)	Annual Steel production (M tons, 2011) ⁽²⁾
	Cars & light truck	113 (M Vehicles)	1100 kg/vehicle	123
T	Trucks	5,7 (M Vehicles)	4900 kg/vehicle	28
Transport	Ships	1 (k units)	20 000	23
	Rail	5 (k units)	4000	20
	Buildings Residential	3 930 (km² ⁽⁴⁾)	107 kg/m² ⁽¹⁾	422
	Buildings Others	830 (km² ⁽⁴⁾)	93 kg/m² ⁽¹⁾	77
Buildings	Infrastructure	1750 (km² ⁽⁴⁾)	187 kg/m²	332
	Mechanical equipment	160 (M tons)	0,97	153
	Appliance	253 (M tons)	0,17	43
Consumer	Metal goods	257 (M tons)	0,75	193
goods	Consumer packaging	530 (M tons)	0,02kg/kg packaging	11
	Windmills	17,500 2MW turbines	350 tons/2MW turbine ⁽³⁾	6,1
Energy	PV panels	160 M m ²	2kg /m²	0,320
	Electrical equipment	61,1 (M tons)	0,75	46
	CCS + oil pipes	100 000 km	0,4 ton/m	40
Other	Other Steel	~0M (tons)	1	~0
		Model demand		

drivers

NOTE: (2) Linking product to material demand for a same year is a modelling simplification; in reality, the material production can happen several years before the product delivery

(4) Of ground surface

SOURCE: (1) Muiris Moynihan thesis obtains 20kg/m² for residential buildings and 100 kg/m² for commercial (2) With both eyes open (3) Worldsteel Wind energy case study

Total 1518 Mton (100%)

Agenda

Global **C**alculator

Introduction to the global calculator

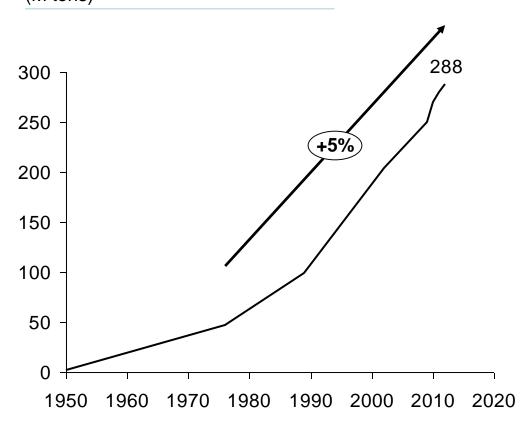
Historical energy evolution and link to materials demand

Manufacturing

Steel

Chemicals

Aluminium

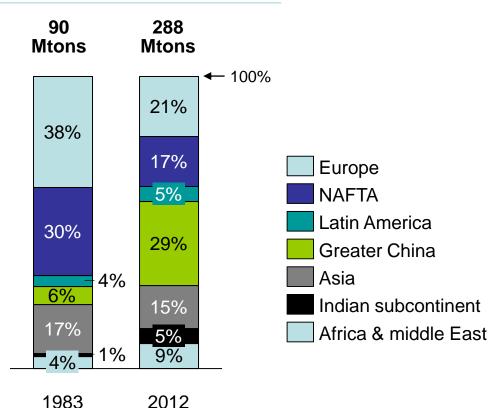

Cement

Paper & timber

Chemicals demand has experienced a strong growth (5% CAGR) since the 1980s

Global Calculator

World Plastics production ⁽³⁾ (M tons)


- More than 95% of all manufactured products rely on chemistry ⁽²⁾
- While growth has levelled off in some industrialised counties, production in China and other emerging economies continues to increase rapidly ⁽¹⁾

SOURCE : (1) IEA ETP 2012 (2) ICCA, 2010), (3) PlasticsEurope (PEMRG) / Consultic via Plastics Europe Association of Plastics manufacturers

Plastics demand is moving east

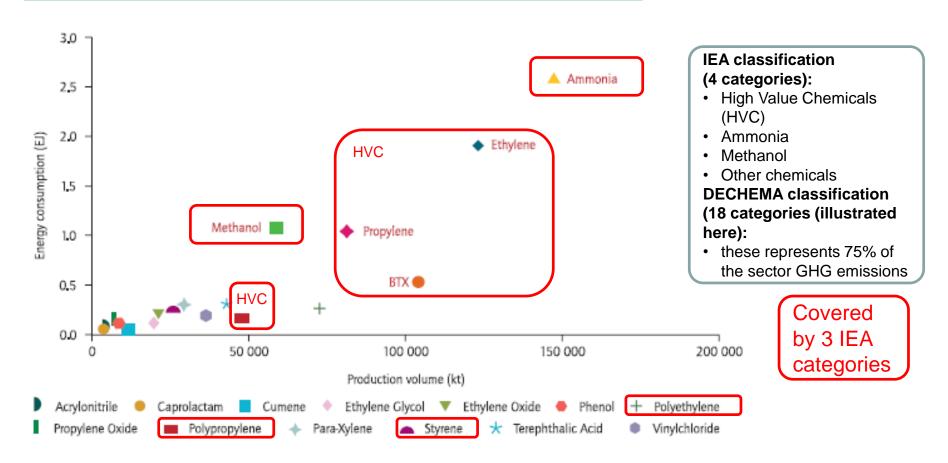
Global **C**alculator

Evolution of demand per region (M tons)

- Consumption of plastics isn't averaged uniformly around the world:
 - Europe, Japan & the US consume ~120kg/
 - person/year
- In the UK 11kg for plastics packaging

Output from the chemical industry covers three wide ranges of products

Global **C**alculator


Base	Specialty	Consumer
chemicals	chemicals	chemicals
 Acrilates Adipic acid Amines Ammonia Aniline Benzene Butadiene Caprolactam Ethylene Ethylene oxide Formaldehyde Hydrogen Mono vinyl chloride Nitric acid Propylene Styrene Sulfuric acid Toluene 	 Adhesives Agrichemicals cleaning materials cosmetic additives construction chemicals Elastomers Flavours food additives Fragrances Industrial gases Lubricants Polymers Surfactants Textile auxiliaries 	 Automobiles Cleaning materials (e.g. detergents) Cosmetics (e.g. Soaps) Electronic gadgets Materials used to construct home Paints & coatings Plastics

1

3 categories (used by the IEA) cover most of the chemical production & energy consumption

Global **C**alculator

Energy consumption and volume production of chemical products (EJ, Kt)

Global **C**alculator

Plastics materials characteristics (including various alloys and treatments)

Diversity	Plastics encompass a broad range of materials with diverse composition and treatments. This leads to a very diverse set of properties
Mouldability	One common characteristic of plastics is the ability to be moulded ⁽²⁾
Recycling	Some of the plastics can be recycled but not all (to simplify the thermoplastics can be reprocessed while the thermosets get their properties once and for all) Some are biodegradable and this is not directly correlated to the fact they are made of bioplastics The diversity of their composition makes recycling complex
Strength	Some plastics can be stronger than most other materials available. They can be resistant to traction (e.g. fibres) and compression (e.g. blocks). Hybrid mixes combine the advantages of both
Light	Some plastics can be lighter than most other materials
Durability	Some plastics can keep their properties for a very long time and be resistant to chemical reactions

possibility to reach a wide range of characteristics which explains the strong demand for plastics

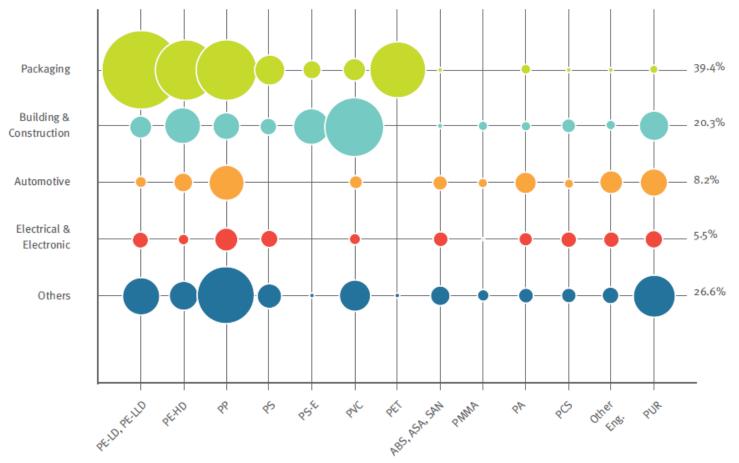
It is this

NOTE: (1) Aromatix (BTX) are HVC but are not plastics

(2) The word plastics comes from $\pi\lambda\alpha\sigma\tau\kappa\sigma$ which means « can be moulded SOURCE: with both eyes open

HVC drivers A large variety of plastics compositions are available; & for each, properties can then be modified by treatments

Global **C**alculator

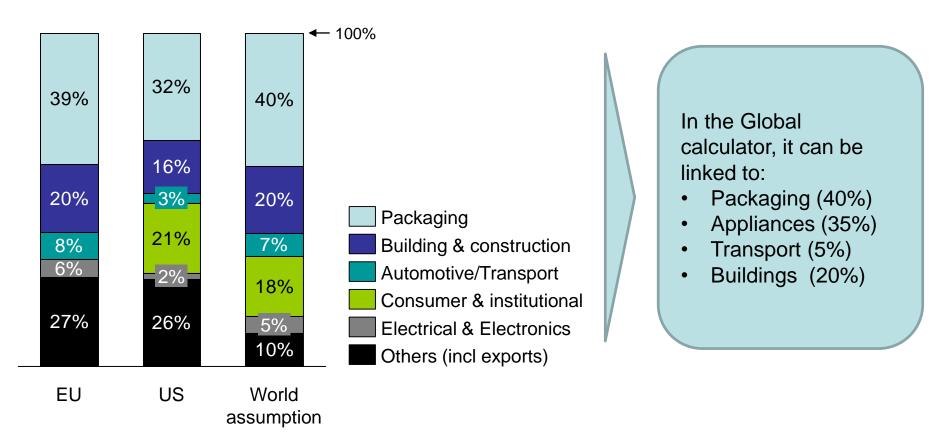

Plastics types (non-exhaustive)

Plastic type		Market share ⁽³⁾	Properties	Applications
HDPE	High density polyethilene	12%	Stronger , stiffer , chemical resistance	Containers, caps, toys, pipes
LDPE (LLDPE)	Low density polyethilene	17,5%	Flexible, can be transparent, chemical resistance	packaging (bags & films), bottles; wire cables
PP	Polypropylene	18,8%	Tough & flexible, chemical resistance	Textiles, stationary, automotive components (e.g. car bumper), packaging
PS	Polystyrene	7,4%	Light	Protective packaging, glass frames, yoghurt pots
PVC	Polyvinylchloride	10,7%	Cheap & versatile, chemical resistance (e.g. corrosion)	Boots, window frames, pipes, fittings, canoes, garden hoses
ABS	Acrylonitrile butadiene styrene		Tough & easy to mould, glossy, shiny finish	Helmets, machinery casing, children toys (lego)
PMMA	Polymethylmethac rylate)		Tough transparent plastic	Windows & safety spectacles
PA	Polyamide		Tough	Nylon, car tires, ropes, tubing
PET	Polyethylene terephthalate	6,5%	Resistant	Beverage bottles
PUR	Polyurethane	7,3%	Strength	Sponges, Lycra, spandex, gears, bearings & wheels
PLA	Polylactic acid		Bioplastic	Wide, also medical implants
Other		19,8%		

Properties can also be modified through the use of additives, fillers, heat treatment processes and mechanical deformation

HVC drivers Global There is no simple correlation between plastic types and applications Calculator

Plastics demand by segment and resin type (2012, European market EU 27+CH,%)



HVC drivers Plastics demand drivers are being identified

Global **C**alculator

Plastics demand drivers

(%)

NOTE: World segmentation is a Climact estimate based on the EU and US data

SOURCE: With both eyes open, PlasticsEurope (PEMRG) / Consultic / ECEBD for 2012

Ammonia drivers

Global **C**alculator

Rationale for ammonia demand

- Ammonia contributes to the nutritional needs of terrestrial organisms by serving as a precursor to food and fertilizers. About 50% of the world's food production relies on ammonia-based fertilisers ⁽¹⁾
- Ammonia is used for the synthesis of many pharmaceuticals
- Ammonia is used in many commercial cleaning products
- Emissions caused by the application of fertilizers are assessed in the Land/Food/Biomass section of the global calculator

- Fertilizer consumption evolution is linked to the evolution of yield in the agriculture sector as follows:
- % change in fertilizer =
 - 30%⁽²⁾
 - *% change in yield
 - *% change in food production
- This way the fertilizer production is even linked to the consumer food habits (which drive food production demand)

SOURCE: (1) Erismann, 2008, Global Calculator workshops

NOTE: (2) Factor reflects yield growth can evolve for a number of factors (genotype + environment), e.g., irrigation, better farm management and crop varieties.

Methanol drivers

Rationale for methanol demand

Making other chemicals	 The largest use of methanol by far ~40% of methanol is converted to formaldehyde, and from there into products as diverse as plastics, plywood, paints, explosives, and permanent press textiles
Fuel	 Methanol is used on a limited basis to fuel internal combustion engines
Other uses	 Solvent antifreeze in pipelines and windshield washer fluid

Global **C**alculator

In the Global calculator, it can be linked to the HCV evolution (and therefore to the same drivers)

Today, this is the model generated demand, it willGlobalevolve based on Product demand defined by the otherCalculatorsectorsSectors

Products		Amounts (units, 2011)	Intens (tons/p	sity /product/	/year)	0	X	nemicals I tons, 20		
			HVC	Ammo nia	Metha nol	Others	HVC	Ammo nia	Metha nol	Others
Transport	Cars & light trucks	113 (M Vehicles)	0,12	-	0,02	0,07	14	-	3	8
	Trucks	5,7 (M Vehicles)	0,4		0,07	0,24	2		0,4	1
	Ships	1 (k units)	-	-	-	-	-	-	-	-
	Batteries (not modelled in v1)	•	-	-	-	-	-	-	-	-
Buildings	Buildings residential	3930 (km ^{2 (4)})	0,014	-	0,002	0,009	54	-	10	35
	Buildings Others	830 (km ^{2 (4)})	0,012	-	0,002	0,008	10	-	2	6,5
	Appliances	250 (Mt)	0,438	-	0,08	0,29	111	-	20	73
Consumer	Packaging	530 (Mt)	0,24	-	0,04	0,16	128	-	23	84
goods	3D Printing (not modelled in v1)	-	-	-	-	-	-	-	-	-
	Population (Fertilizers)	7,0 Bln people	-	23 kg/per son	-	-	-	164	-	-
Energy	Windmill (blades in carbon fibre)	17,600 2MW turbines	30 tons	-	-	-	0,5	-	-	-
	PV panels	160 M m ²	5kg /m²	-	-	•	0,7	-	-	-
Total	Total	1	1	1	1	1	320	164	58	208
		Model demand					Legend	d		
		drivers)				Re	presentative	e Products	,
NOTES: (1)) High Value chemicals typically inclu	ude Ethylene, Propylene, F	3TX aromati	ics(benzene	, toluene an	d mixed		che product		

NOTES: (1) High Value chemicals typically include Ethylene, Propylene, BTX aromatics(benzene, toluene and mixed xylenes)

(2) Linking product to material demand for a same year is a modelling simplification; in reality, the material production can happen several years before the product delivery
 (4) Of ground surface.

In a later model version, 58 Plastics Europe could be contacted to validate this allocation as well as the total production of other chemicals

Figures of July 2014

Agenda

Global **C**alculator

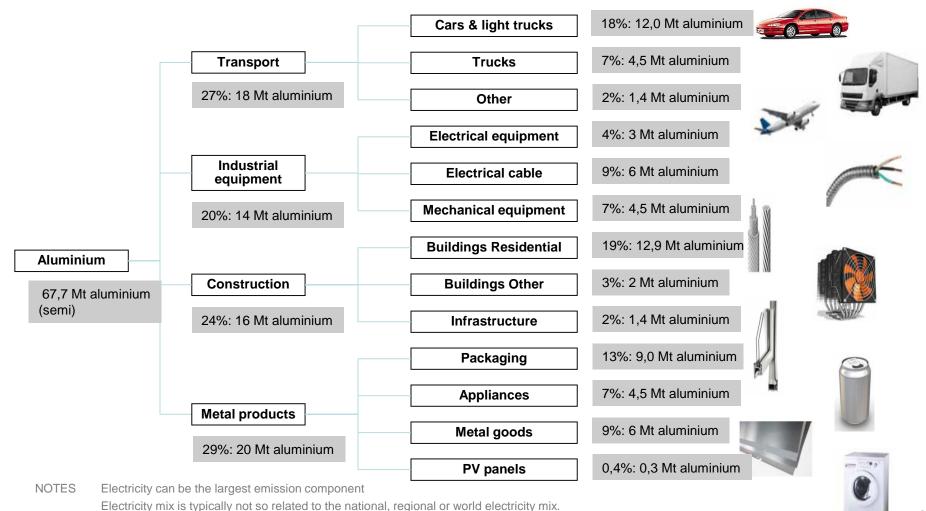
Introduction to the global calculator

Historical energy evolution and link to materials demand

Manufacturing

Steel

Chemicals


Aluminium

Cement

Paper & timber

Aluminium Demand driving products

In recent years, newer plants tended to rely on more coal based electricity

SOURCE: With both eyes open, Copyright 2012 UIT Cambridge Ltd.

Aluminium Materials demand is driven by the product demand

Technolo Products	•	Amounts (units, 2011)	Intensity (tons/ product)	Aluminium production (M tons) ⁽²⁾
	Cars & light truck	113 (M vehicles)	0,13 tons/vehicles	12
Tresses	Trucks	5,7 (M vehicles)	0,94 ton/vehicle	5
Transport	Ships	1 (k units)	0 tons/unit	0
	Airplanes	35 000 (units)	500 tons/unit	2
	Buildings residential	3930 (km² ⁽⁴⁾)	4,4 kg/m ^{2 (1)}	13
	Buildings others	830 (km² ⁽⁴⁾)	3,8 kg/m ^{2 (1)}	2
	Infrastructure	1750 (km² ⁽⁴⁾)	1,2 kg/m² ⁽¹⁾	2
Buildings	Mechanical Equipment	160 (M tons)	34kg/ton eqpt	5
	Appliance	253 (M tons)	21 kg/ton appliance	5
•	Metal goods	257 (M tons)	0,3 tons/ton goods	6
Consumer goods	Consumer packaging	530 (M tons)	0,02 tons/ton packaging	9
	PV panels	160 M m ²	2kg /m²	0,31
Energy	Electrical Equipment	61,4 (M tons)	0,03 tons/ton eqpt	3
	Electrical cables	24 (M km)	0,3 tons/km	6
Other	Other Aluminium	0 (M tons)	1 ton/ton product	0

Model demand drivers

Total 67,7 Mton (100%)

SOURCE: (1) Model defined, with both eyes open provides 5kg/m²

(2) With both eyes open base, adapted to IEA figures & new products

(4) Of ground surface

Agenda

Global **C**alculator

Introduction to the global calculator

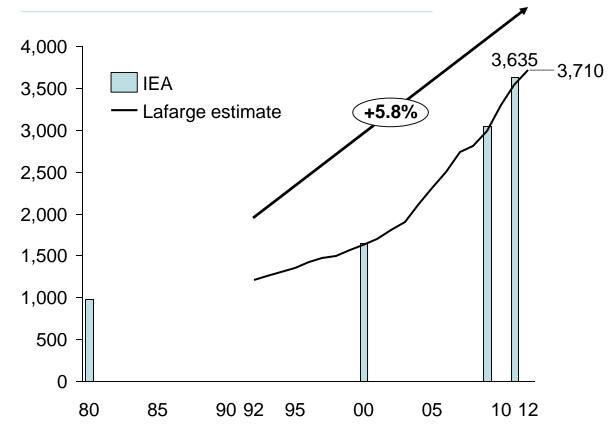
Historical energy evolution and link to materials demand

Manufacturing

Steel

Chemicals

Aluminium

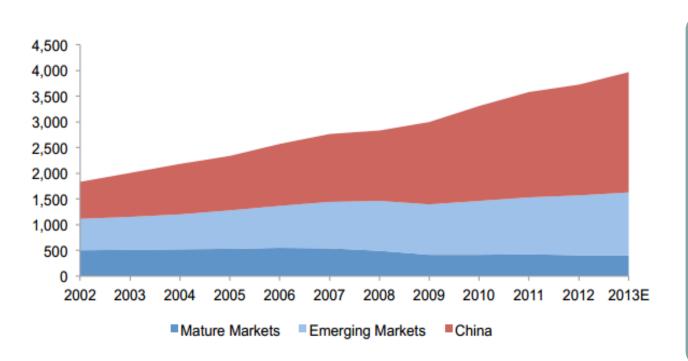

Cement

Paper & timber

Cement production has grown by ~5% per year since 1990

Global **C**alculator

Historic evolution of cement production (Mtons)

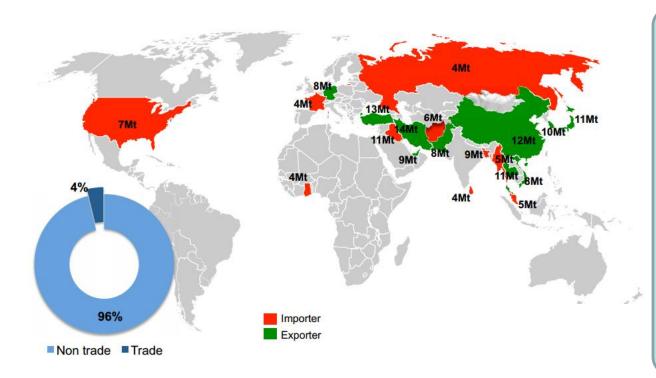

North American and European demand stagnated from 1970 to 1995, while Chinese demand has expanded at a phenomenal rate

•

Cement demand is largely driven by China

Global Calculator

Evolution of cement demand (2002-2013 M tons)



- Global cement demand is dominated by China (39% in 2002 vs 58% in 2012)
- Steady growth in emerging markets
- Mature markets entered into a period of contraction from 2008

Only 4% of the cement production is internationally traded

Global **C**alculator

Magnitude of the top 10 importers and exporters (Mt, 2012)

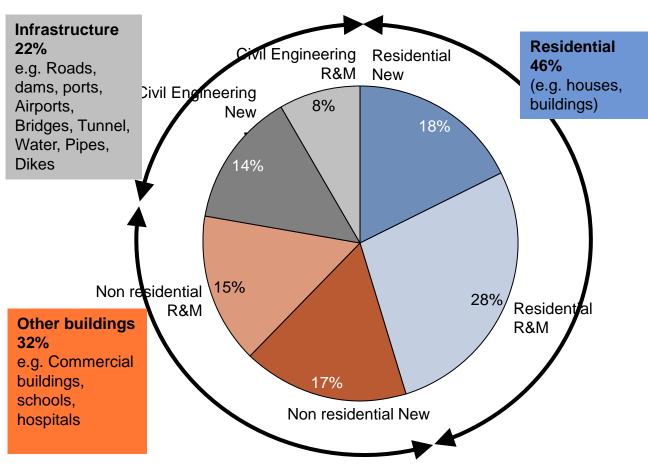
- Total of 167Mt traded in
 2012 (4% of production)
- Top 20 exporters account of 85% of exports
- The major continents produce most of their own cement
- Cement resources are well distributed across the planet
- Cement has limited
 added value by weight

Concrete is often used in addition to steel to make durable products

Global **C**alculator

Cement materials characteristics

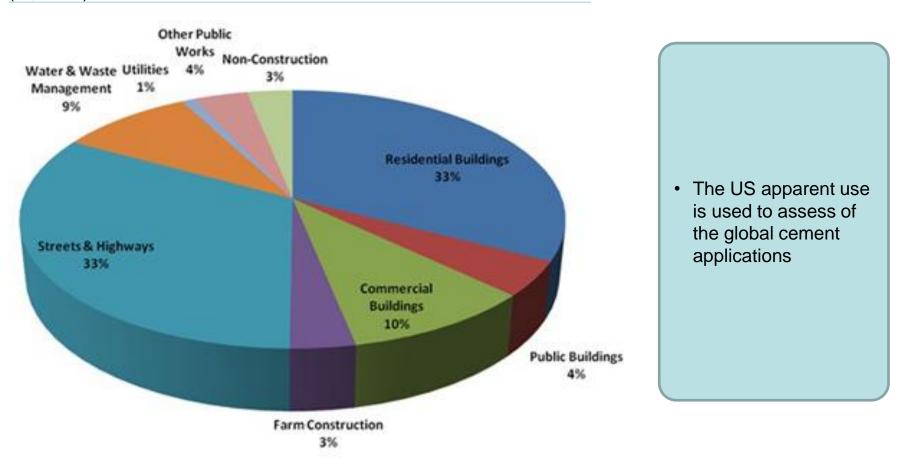
1


Strong in compression	Cement is strong in compression, yet weak in tension Portland cement makes it settle faster, furthermore it can settle underwater	Concrete is used
Durable	Concrete is not sensitive to corrosion (vs steel) nor fire (vs timber)	in addition with steel in most applications (steel is strong in
Practical to handle	Concrete can be poured, which enables easier transport and construction of materials Has a thermal expansion similar to that of steel	tension, and concrete prevents steel from
Affordable	Cement tends to be cheaper than other durable materials	corrosion)

Cement is mainly used for Domestic buildings, Other buildings and Infrastructures

Construction market in Europe

(Bln €, 2012)⁽²⁾


- Cement is mainly used as a binder in concrete, which is a basic material for all types of construction⁽¹⁾
- The European construction market is an indication of the global cement applications

SOURCE: (1) Cembureau, The role of CEMENT in the 2050 LOW CARBON ECONOMY, (2) with both eyes open (3) Euroconstruct, VTT, Buildecon, EU 27 (excl Cyprus, Greece, Luxembourg & Malta), plus Noway & Switzerland

Cement is mainly used for Domestic buildings, Other buildings and Infrastructures

Global **C**alculator

Apparent use of Portland cement by market (%, 2006)

1

Cement Materials demand is driven by the product demand

Technologies & Products		Amounts (units, 2011)	Intensity (tons/ product)	Cement production (G tons, 2011 ⁽²⁾)
	Residential Buildings	3930 million m ^{2 (4)}	305 kg cement per m ² of buildings ⁽¹⁾	1,200 Gton (33%)
Buildings	Other Buildings	830 million m ^{2 (4)}	745 kg cement per m ² of buildings ⁽¹⁾	618 Gton (17%)
	Infrastructure	1750 million m2 ⁽⁴⁾	1023 rest kg cement per m ² of buildings ⁽¹⁾	1,818 Gton (50%)
		Model demand drivers		Total 3,635 Gton (100%)

NOTE: (1) With both eyes open assumes ~60 kg per floor. The model is working with ground surface so including several floor levels. Assuming 8 tons of cement per ton of concrete and a concrete density of 2200kg/m3, one can assess the width of concrete in the buildings. 500kg/m² is close to 2 m depth per square meter

Furthermore, residential buildings typically have half as much steel per concrete, than other buildings (commercial/industrial).

- (2) Linking product to material demand for a same year is a modelling simplification; in reality, the material production can happen several years before the product delivery
- (4) Of ground surface

SOURCE: (1) Model, matching buildings estimate to cement and steel demand

Agenda

Global **C**alculator

Introduction to the global calculator

Historical energy evolution and link to materials demand

Manufacturing

Steel

Chemicals

Aluminium

Cement

Paper & timber

Paper Materials demand is driven by the product demand

Technologies & Products		Amounts (units, 2011)	(tons/ product)	Paper production (M tons) ^(1,2)
	Printing & graphic	263 (M tons)	1	263
Consumer goods	Packaging	532 (M tons)	0,517 t paper/ton packaging	275
	Other (e.g. hygiene)	73 (M tons)	1	73
		Model demand drivers		Total 611 Mton (100%)

Timber Materials demand is driven by the product demand

Technologies & Products		Amounts (units) (units, 2011)	Intensity (tons/ product)	Timber production (M tons) ⁽²⁾
Puildings	Buildings residential	3930 (km² ⁽⁴⁾)	0,12	479
Buildings	Buildings Others	830 (km² ⁽⁴⁾)	0,11	87
Consumer goods	Other timber (incl. Furniture)	243 (tons)	1	243
		Model demand drivers		Total 809 Mton (100%)

NOTES: (2) Linking product to material demand for a same year is a modelling simplification; in reality, the material production can happen several years before the product delivery

(4) Of ground surface

SOURCE: (1) Global Calculator