Global **C**alculator

Global Calculator Technical documentation

Manufacturing sector

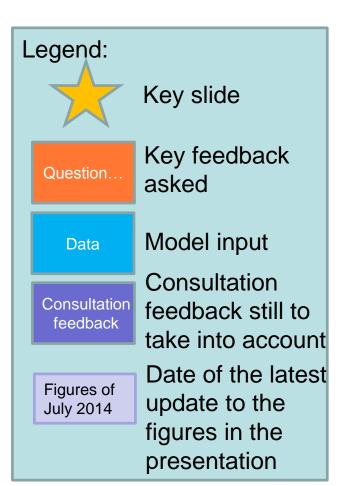
Technical documentation (Part 2 Evolution of materials and emissions)

2015

Preliminary information on this technical documentation Global Calculator

- This technical documentation highlights the assumptions used in the manufacturing sector of the global calculator model. Introduction material generic to all sectors should be read prior going through this technical document.
- Most of this documentation has been performed to support workshop discussions on the technical choices in the manufacturing sector (in steel, cement, chemicals & across the sector as a whole)
- The global calculator aims at supporting the debate. You are more than welcome to share feedback on the calculator and on this documentation. We aim at continuously refining this analysis with your feedbacks. The expert feedback is incorporated in the analysis through various steps:
 - 1. It is flagged as feedback to include in the analysis
 - 2. The analysis documents are refined accordingly
 - 3. The model is updated and the model results are shown in the presentation

The dates of the figures used in the model are written Most of the figures in this document date from July 2014. Please note that some minor modifications have been placed in the model since July 2014. In case of differences between the presentation and the model, the model has the most recent estimates.


• All this documentation is open source ⁽¹⁾

NOTE: (1) The Global Calculator spreadsheet and supporting documentation is made available under (and subject to the terms of) the Open Government Licence (www.nationalarchives.gov.uk/doc/open-government-licence/version/2/). The web tool is published under (and subject to the terms of) the Creative Commons Licence (attribution, non-commercial, see: http://creativecommons.org/licenses/by-nc/4.0/legalcode).

2

Legend associated with the consulting process

• Several slides in this technical documentation document are tagged to reflect the stakeholder consultations

Global

Calculator

Agenda

Global **C**alculator

2050 evolution of materials and emissions

Materials demand evolution

- Cross sector demand
- · Cross sector material switch
- Steel
- Chemicals
- Aluminium
- Cement
- Paper & Timber

Reduction potential on the manufacturing processes

- Resulting emissions
- Discussion on ambition levels across sectors
- Discussion on CCS
- Steel
- Chemicals
- Aluminium
- Cement
- Paper, Timber & Other

Agenda

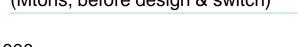
Global **C**alculator

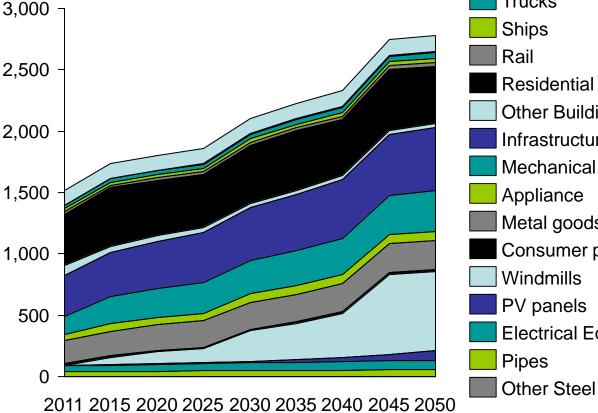
2050 evolution of materials and emissions

Materials demand evolution

- Cross sector demand
- Cross sector material switch
- Steel
- Chemicals
- Aluminium
- Cement
- Paper & Timber

Reduction potential on the manufacturing processes


- Resulting emissions
- Discussion on ambition levels across sectors
- Discussion on CCS
- Steel
- Chemicals
- Aluminium
- Cement
- Paper, Timber & Other


REMINDER: In the model, material demand is driven by product demand

Figures of July 2014 Global Calculator

Steel demand evolution (Mtons, before design & switch)

Reduce

Steel example in a pathway with ambition 3

- Product demand determines material demand
- How should product demand be determined?

REMINDER: Most product demand is defined by sector activity, Some products are driven by the "Product demand" lever,

Reduce

Key drivers of demand to be challenged

Global

Calculator

Group	Products	Model Technologies (grouped)	Demand driven by	Rationale
Transport	Car & Light trucks	Bike, Cars, Motorbike	By transport sector	1
	Trucks	Trucks, Bus		1
	Rail	Trains		1
	Airplanes	Planes		/
	Trucks & ships	Trucks, Ships		1
	Infrastructure ⁽¹⁾	Roads		/
	Batteries	Electric vehicles		/
Buildings	Buildings	Residential/Non-residential	By buildings sector	/
	Infrastructure ⁽¹⁾	Bridges, Roads, Airports	By transport sector	to avoid iteration loop and have it defined in one place
	Mechanical equipment's	Cooker, HVAC	By Buildings sector	/
	Appliances	Various appliances, stoves, lighting		/
Consumer	Paper	Print, graphic	By "Product demand " lever	1
goods	Metal goods	Consumer products	By "Product demand " lever	/
	Consumer packaging	Consumer packaging	By "Product demand " lever	/
	Fertilizers	Ammonia production	By Population	By Land & food sector in v2
Energy/	Wind	Onshore, offshore	By energy sector	
Electricity	PV	Solar PV		/
	Electrical Equipements	Transformers	Skipped	to avoid iteration loop
	Electrical cables	Transmition lines		
	Pipes			Not modelled in v1
	Infrastructure ⁽¹⁾	Energy Plants& network	By transport sector	to avoid iteration loop and have it defined in one place
Industry	Infrastructure ⁽¹⁾	Plants of each kind of material	By transport sector	to avoid iteration loop and have it defined in one place
	Paper	Paper	By "Product demand " lever	

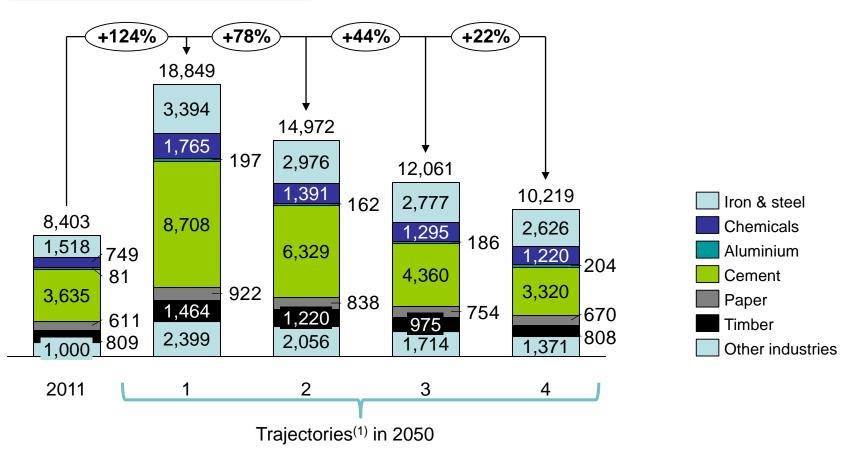
NOTE: (1) Infrastructure is present in three sectors: Energy, Industry and Transport. The allocation is as follows x,y,z. It's demand evolution is currently following the transport demand only.

The lever choices in the other sector generate various product evolutions

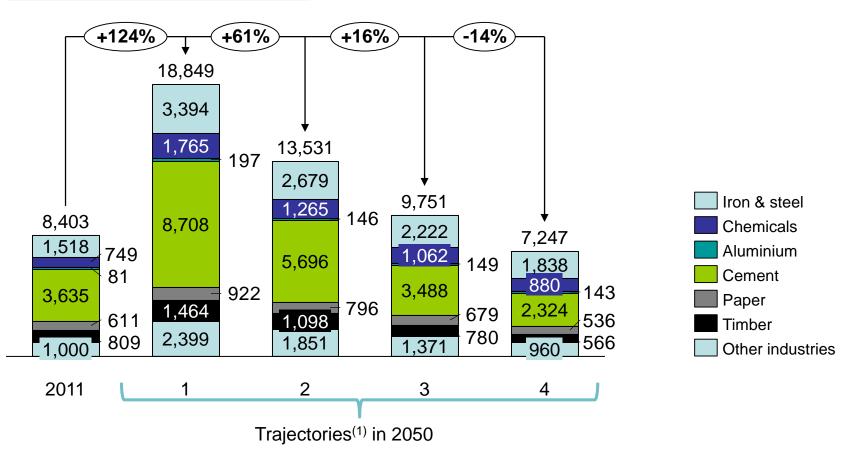
Figures of July 2014 **G**lobal **C**alculator

Group	Product	2011 d (units)	lemand	2050 demand p (% evolution vs 2		tion ⁽¹⁾	
	Cars & light truck	111,3	Million units	300%			
	Cars & light truck EV	1,5	Million units			1,331%	
	Trucks	5,7	Million units		439%	,, ,,	
Transport	Ships	1	K units	184%			
	Rail	5	K units	101%			
	Airplanes	35	K units		437%		
	Batteries	1	Million units	137%			
	Residential Buildings	3932	Million m2	141%			-
	Other Buildings	830	Million m2	230%			
Buildings	Infrastructure	1750	Million m2	307%			
	Mechanical equipment	160	Million tons	219%			
	Appliance	43	Million tons		421%		
	Print & Graphic Paper	253	Million tons	152%			-
Consumer goods	Metal goods	257	Million tons	165%			
guous	Consumer packaging	530	Million tons	152%			
Food	Fertilizer	164	Million tons	169%			
	Windmills	17600	Units			13,6	26%
	PV panels	160	Million m2				3٤
Energy	Electrical Equipment	61	Million tons	239%		// // // // // //	
	Electrical cables	24	Million km	239%		Ambition 4	
	Pipes	100 000	km	137%		Ambition 3	
Other	Other	0,0	Million tons	239%		Ambition 2 8	8

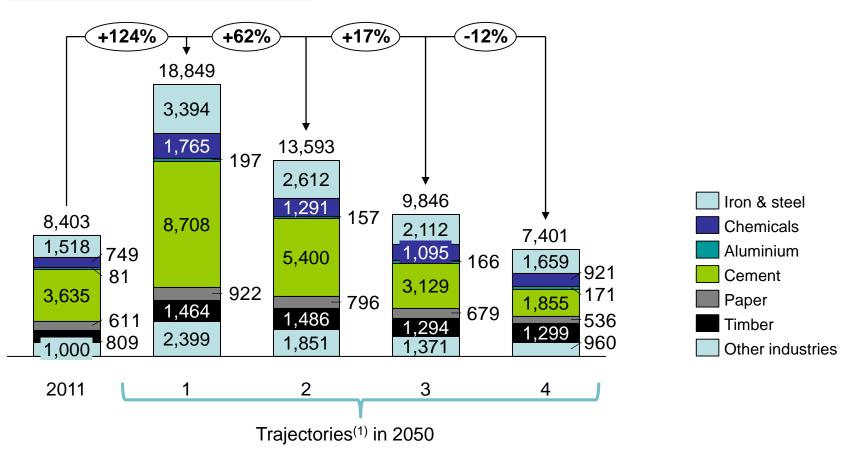
2011 =100%

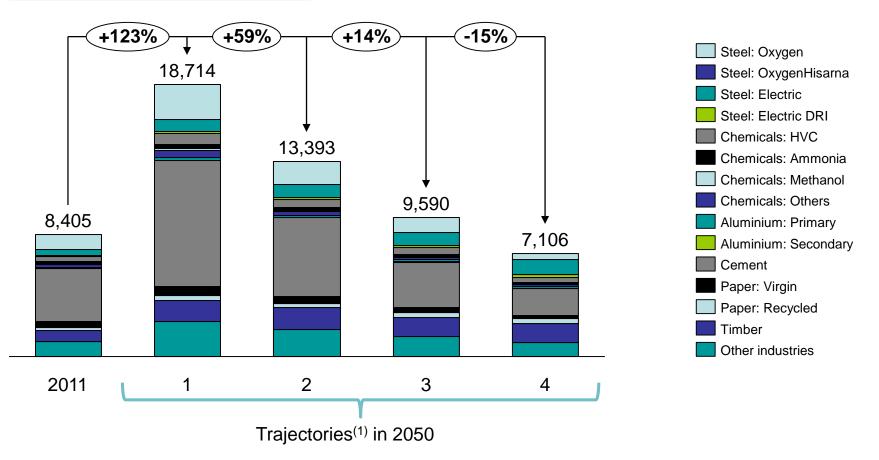

The lever choices in the other sector generate various product evolutions

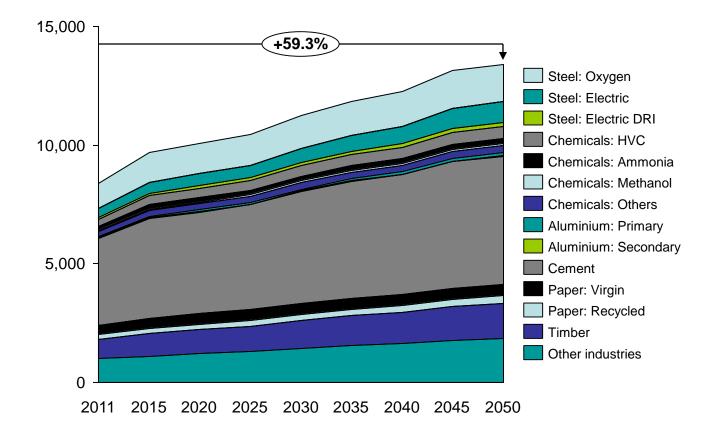
Figures of July 2014 Global Calculator


Group	Product	2011 lifetime (years)	Lifetime per ambition (years)
	Cars & light truck	12,2	16
	Cars & light truck EV	12,4	16
_ .	Trucks	12,4	18
Transport	Ships	40	
	Rail	30	39
	Airplanes	20	26
	Batteries	/	
	Residential Buildings	/	
	Other Buildings	/	
Buildings	Infrastructure	/	
	Mechanical equipment	21,9	21
	Appliance	11,9	19
_	Print & Graphic Paper	/	
Consumer goods	Metal goods	/	
50003	Consumer packaging	/	
Food	Fertilizer	/	
	Windmills	24,1	21
Energy	PV panels	20,0	20 Ambition 1
	Electrical Equipment	/	
	Electrical cables	/	Ambition 2
	Pipes	/	Ambition 3
Other	Other	/	9 Ambition 4

NOTE (1) Population follows the average UN projection in all ambitions




NOTE: (1) The population follows the average UN projection in all four trajectories SOURCE: IEA ETP 2012, Global calculator model


NOTE: (1) The population follows the average UN projection in all four trajectories SOURCE: IEA ETP 2012, Global calculator model

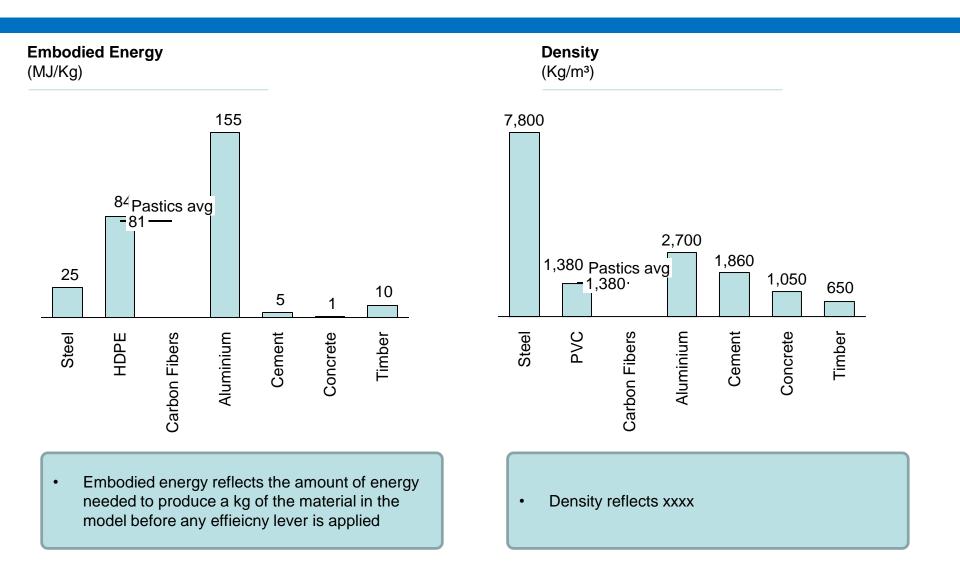
Production evolution per industry with an ambition 2, (Mton)

Agenda

Global **C**alculator

2050 evolution of materials and emissions

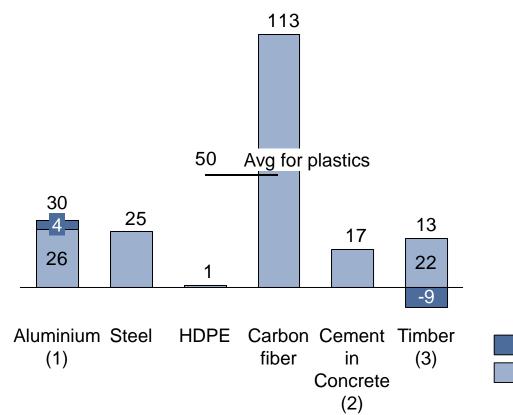
Materials demand evolution


- Cross sector demand
- Cross sector material switch
- Steel
- Chemicals
- Aluminium
- Cement
- Paper & Timber

Reduction potential on the manufacturing processes

- Resulting emissions
- Discussion on ambition levels across sectors
- Discussion on CCS
- Steel
- Chemicals
- Aluminium
- Cement
- Paper, Timber & Other

Each material has a different set of properties


Global **C**alculator

The specific Young modulus indicates how much of a material is required to replace another

Global **C**alculator

Specific Young modulus (Young modulus in Gpa, divided by density)

Rationale

- We use these figures to compute how much material is required to replace another (e.g., ~2x the weight of timber to replace steel)
- This is a high level approximation and the conversion factor should differ for each pair of products
- Product lives are assumed to be similar

Global calculator correction for switch factor Specific Young modulus

NOTE: (1) Tweaked to 20% more than steel, to represent the fact 20% less mass is typically required in transport applications (2) Assuming 8% cement per ton concrete

(3) Assuming Pine, then removing 40% to account to material discontinuity safety factor

SOURCE : Wikipedia Specific modulus

Material switches in Transport

Switch

Design

Reduce

Groups	Products	Units	Composition per u 2011	nit (tons, (vs 20 Ambition 1	11)) Ambition 4
	Cars & light truck	units	Steel: 1,150 ton Alu: 0,15 ton HVC: 0,1 ton Methane: 0,02 ton Other chem: 0,07ton	idem	 Replace 20% steel by aluminium 20% steel by carbon fibres
	Trucks	units	Steel: 3,030 ton Alu: 1 ton HVC: 0,3 ton Methanol:0,06ton Other chem: 0,2ton	idem	 Replace 20% steel by aluminium 20% steel by carbon fibres
Transport	Ships	units	Steel: 0,462 ton	idem	ldem
	Rail	units	Steel: 6,875 ton	idem	ldem
	Airplanes	units	Alu: 63 ton	idem	Replace50% alu by carbon fiber (HVC)

Material switches in Buildings

Switch

Design

Reduce

Groups	Products	Units	Composition per unit (tons, (vs 2011))		
			2011	Ambition 1	Ambition 4
	Buildings (residential & others)	m² (ground surface)	Steel: 0,202 ton Alu: 0,008 ton HVC: 0,02 ton Methanol: 0,004ton Other chem: 0,004 ton Cement:0,560 ton Bricks: not modelled Timber: 0,22 ton	idem	 Replace 20% steel by timber 20% concrete by timber 5% concrete by insulation materials (HVC)
Buildings	Infrastructure	m² (ground surface)	Steel: 0,187 ton Alu: 0,001 ton Cement0,450 ton	idem	 Replace 5% concrete by insulation materials (HVC)
	Mechanical equipment	tons	Steel: 0,750 ton Alu: 0,013 ton	idem	idem
	Appliance	Million tons	Steel: 0,17 ton Alu: 0,02 ton HVC: 0,43 ton Methanol: 0,08ton Other chem: 0,28ton	idem	idem

Material switches in Consumer goods and Energy

Switch

Groups	Products	Units	Composition per unit (tons, (vs 2011))		
			2011	Ambition 1	Ambition 4
	Print & Graphic Paper	Million tons	Paper: 1 ton	idem	idem
	Metal goods	Million tons	Steel: 0,750 ton Alu: 0,03 ton	idem	idem
Consumer goods	Consumer packaging	Million tons	Steel: 0,021 ton Alu: 0,023 ton HVC: 0,240 ton Methanol: 0,04ton Other Chem: 0,157ton Paper: 0,516 ton	idem	idem
	Fertilizer	tons	Ammonia: 1 ton	idem	idem
	Windmills	2MW Units	Steel: 350 tons HVC: 30 tons	idem	idem
Energy	PV panels	m2	Steel: 2 kg Alu: 2 kg HVC: 5 ton	idem	idem
	Electrical equipment	tons	Steel: 0,750 ton Alu: 0,03 ton	idem	idem
	Electrical cables	Km	Alu: 0,3 ton	idem	idem
	Pipes	meter	Steel: 0,4 ton	idem	idem

 In packaging, both a tendency to more (e-shipping) and to less (more lightweight, tailored to needs) packaging

Reduce

Design

Check expectations with EU packaging federation

Open questions

Discussion topics on material switch

Trends	Impact of urbanisation on the proportion of Steel/Cement in buildings
Intellectual capital	 Which working groups compare the applicability of materials Which dimensions should be taken into account Vedh has a working group Others ?
Other dimensions to take into account	 All products could keep similar lifetimes Timber is less uniform, so a safety margin needs to be included (current assumption of +40% requirements) Fiber glass cannot be recycled and are harder to repair
Costs	 How to you suggest to account of the costs associated with each material? Use the embedded energy of each material?
Magnitude orders	 Overall substitution rate through the above is limited, even in level 4: -11% steel, -1% aluminium, -16% cement

Agenda

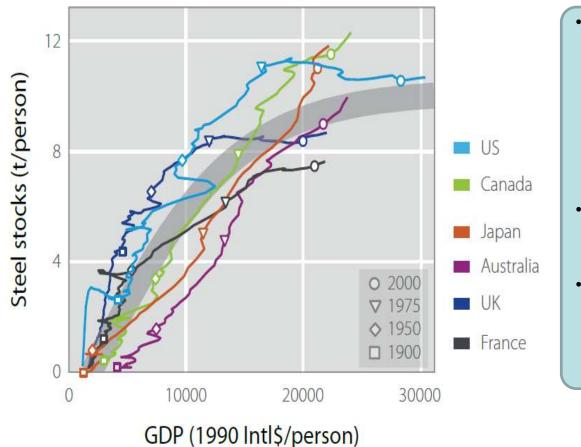
Global **C**alculator

2050 evolution of materials and emissions

Materials demand evolution

- Cross sector demand
- · Cross sector material switch

Steel


- Chemicals
- Aluminium
- Cement
- Paper & Timber

Reduction potential on the manufacturing processes

- Resulting emissions
- Discussion on ambition levels across sectors
- Discussion on CCS
- Steel
- Chemicals
- Aluminium
- Cement
- Paper, Timber & Other

Evolution of steel per capita consumption as function of GDP per capita (ton/person, 1990 International \$/person)⁽¹⁾

- Steel Demand can be correlated to national incomes, up to ~\$20-000 /person, but then the increase declines, when demand for new products, buildings & infrastructure has been satisfied
- Steel stocks appear to saturate between 8 & 12 tons /person ⁽²⁾⁽¹⁾
- This indicates we will reduce our consumption to a level were we will consume what needs to be replaced

SOURCES: (1) With both eyes open, Copyright 2012 UIT Cambridge Ltd.

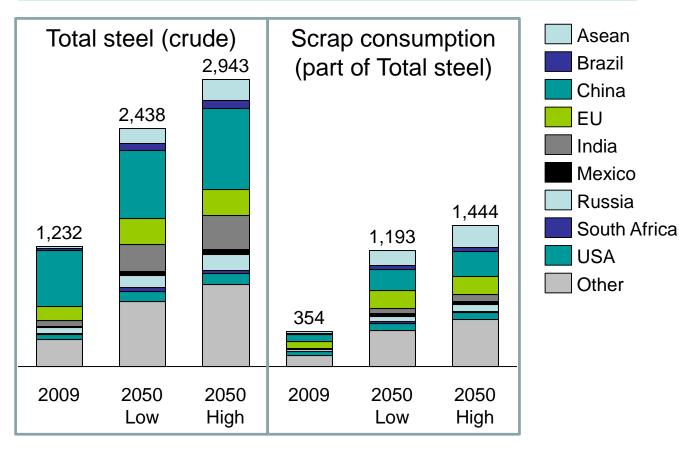
(2) NTNU & Cambride University (2014 04 10 International Materials Education Symposium)

Rationale for expected 2050 Iron & steel demand (1/2)

Rationale for assessing future steel production

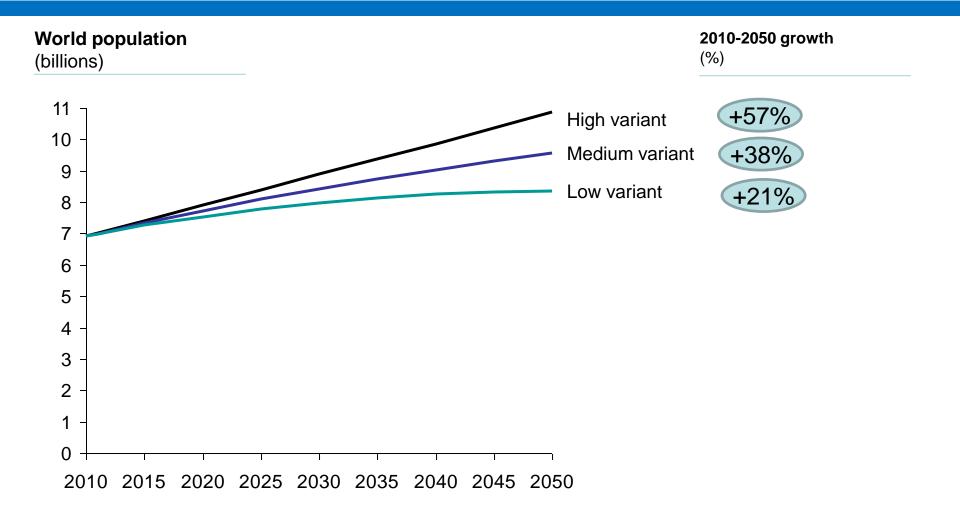
Population evolution	7 billion people in 2010 ⁽³⁾ 8-10 billion people in 2050 ⁽³⁾
Demand per capita evolution	Per capita • 201 kg/capita in 2010 • 225-270 kg/capita in 2050 ⁽⁴⁾ • 270-319 kg/capita in 2050 ⁽¹⁾
Regional changes	We expect continuing growth in the steel production, driven by developing areas ⁽³⁾ , where steel will be vital in raising the welfare of developing societies. In these regions, more than 60% of steel consumption will be used to create new infrastructure ⁽²⁾
Market segment changes	 Increasing share of manufactured steel goods vs buildings & infrastructure (building and infrastructure construction slows in China into 2050, and China's demand for steel containing goods such as cars & domestic appliances increases) ⁽⁴⁾
Total range	 Based on the above indicative range between 1608 to 3190 M tons in 2050 IEA ETP 2012 has 2438 to 2943 M tons in 2050

Technologies & Products


Evolution driven by

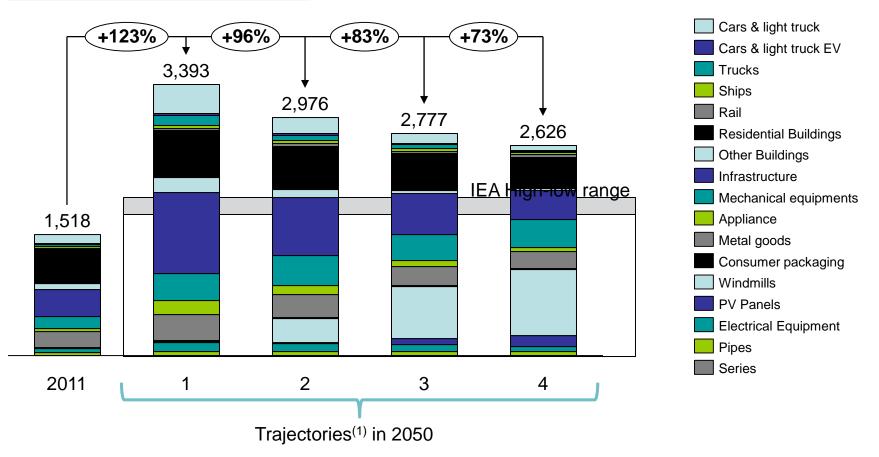
Assumptions (if by product demand)

Buildings Residential	Building model	1
Buildings Others	Building model	1
Infrastructure	Transport demand (pass. & freight)	linked to transport demand
Electrical equipment	Product demand lever	100-175% evolution by 2050
Mechanic equipment	Building model	1
Consumer packaging	Product demand lever	80-110% evolution by 2050
Appliance	Building model	/
Metal goods	Product demand lever	80-120% evolution by 2050
Cars & light truck	Transport model	/
Trucks	Transport model	/
Ships	Transport model	/
Rail	Transport model	/
Windmills	Supply model	/
PV panels	Supply model	/
CCS + oil pipes	Not linked in this version of the model	/
Other Steel	Product demand lever	100%-175% evolution by 2050


The IEA ETP 2012 suggests an increase in Iron & Steel Global production in all scenarios in most regions

Production evolution per scenario per region for Steel (Mton)

By 2050, the world population is expected by the UN to grow by ~20 to ~55%


Global **C**alculator

Figures of July 2014 Global **Global calculator growth forecasts C**alculator Production according to trajectories 1, 2, 3 & 4 (based on sectors demand, before design, switch & recycling) Implied demand Delta Steel production per year per ambition level⁽¹⁾ (M tons) per person 10-50,% 3,500 355 kg +124%Trajectory 1 /person/year **Trajectory 2** 3,000 316 kg +96% Trajectory 3 /person/year Trajectory 4 2,500 291 kg +83% /person/year 2,000 1,500 +73% 275 kg 218 kg /person/year /person/year 1.000 500 0 2010 2015 2020 2025 2030 2035 2040 2045 2050

NOTE: (1) The population follows the average UN projection in all four trajectories SOURCE: Global calculator model

Agenda

Global **C**alculator

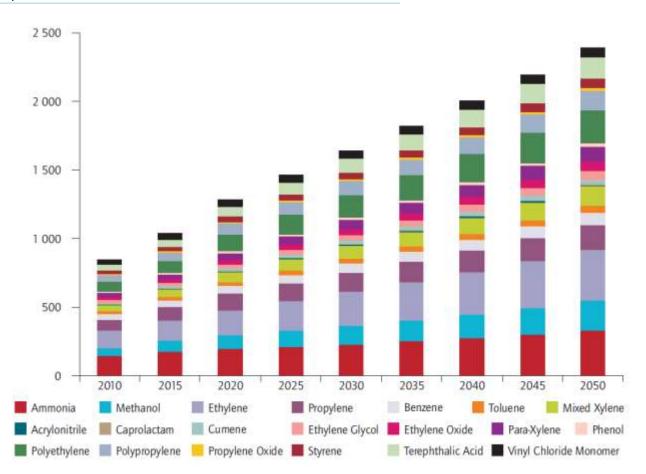
2050 evolution of materials and emissions

Materials demand evolution

- Cross sector demand
- · Cross sector material switch
- Steel

Chemicals

- Aluminium
- Cement
- Paper & Timber

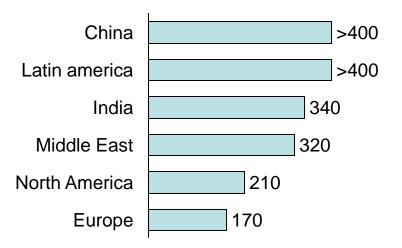

Reduction potential on the manufacturing processes

- Resulting emissions
- Discussion on ambition levels across sectors
- Discussion on CCS
- Steel
- Chemicals
- Aluminium
- Cement
- Paper, Timber & Other

Significant growth is expected in production volume of the chemical and petrochemical sector

Global Calculator

Chemical production volumes forecasts (Mt)


Strong variances are expected between regions (1/2)

Global **C**alculator

Regional variability

- The largest growth in HVC demand is expected to occur in Africa and Middle East. China already biggest chemical producer worldwide
- Demand for chemical products increases sharply in fast-developing countries
- Likely strongest increase in bulkchemical production outside Europe
- This regional outlook could be positively impacted by shale gas in some locations (e.g. United States Gulf Coast) ⁽²⁾

Growths per region to 2050 $(\%)^{(2)}$

Strong variances are expected between regions (2/2) This is because the competitiveness levels strongly differ

Conventional economics Other crucial factors Business climate, Level of competitiveness: ease of doing Access to skilled High Medium Low Local demand labor, skilled business4/ Integration/ labor²/ education³ resilience corruption⁵ Cost position growth1 Overall, highly 1-3% 17/14 21/12 integrated and mature industry Investments are required to improve Highly integrated 10-40% and mature energy efficiency 6/25 4/19 advantage vs. 2-4% industry, new and processes Europe investments ongoing Investments will be Higher cost than EU for some Less mature harder to obtain in products, up to 44 / 54 industry, not yet >10% regions with a lower 50% lower cost fully optimized competitiveness for others level Cost advantage (up to >50%) for 31/39 ~8% Saudi Arabia bulk chemicals

NOTE: Europe represented by Germany in rankings;

1

Region

EU27

US

China

1 Calculated as production minus net exports between 2011-2016 using data from IHS Economics;

2 Rank in "Availability of scientists and engineers", World Economic Forum (WEF);

3 Rank in "Quality of the Education System", WEF;

4 Rank in the World Bank's ease of doing business index 2013;

5 Rank in Transparency International's corruption perception index 2013

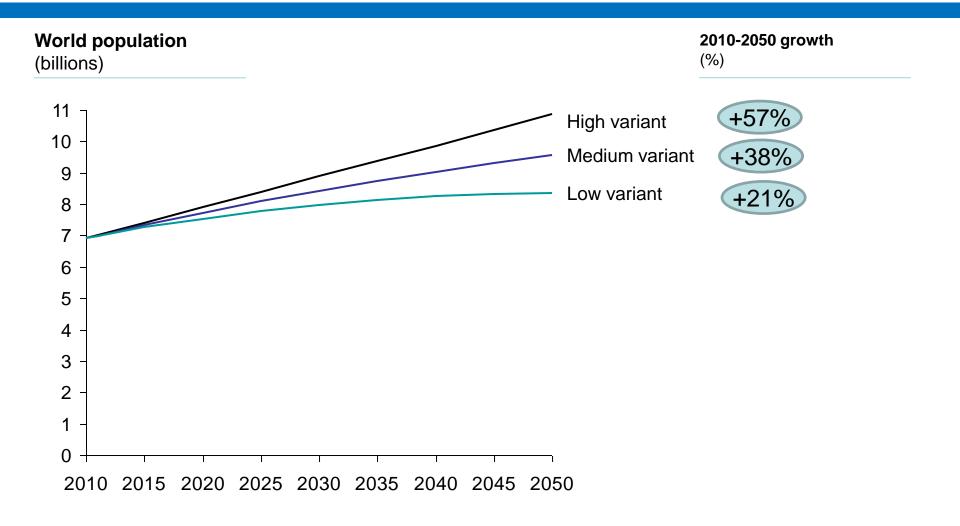
SOURCE: World Bank Doing Business 2014; HIS Economics; WEF Global Competitiveness Report 2013-2014; Transparency International

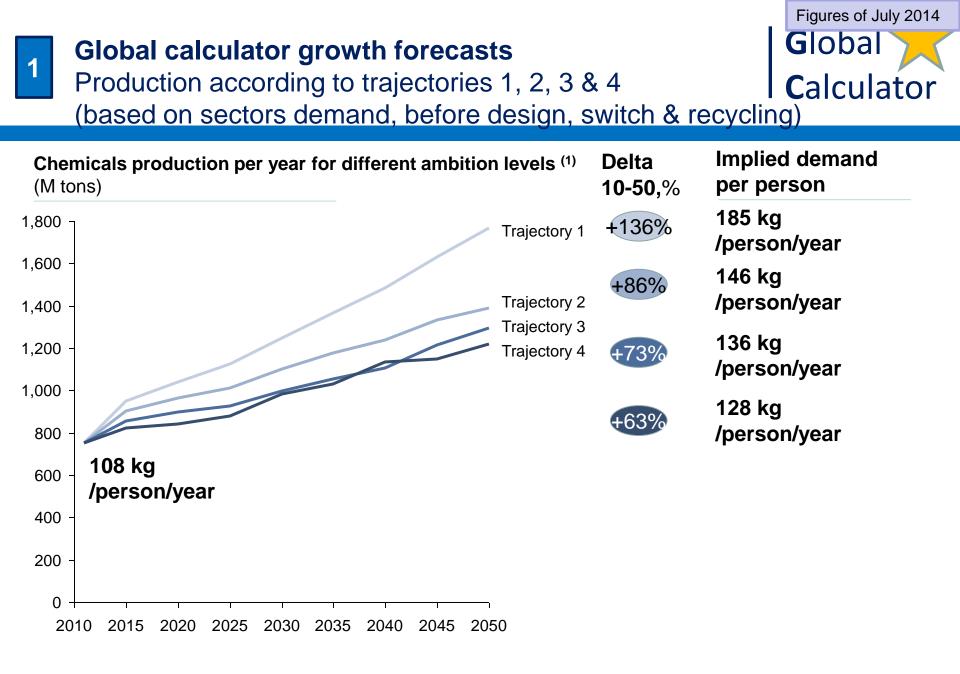
Global

Calculator

Rationale for assessing future steel production

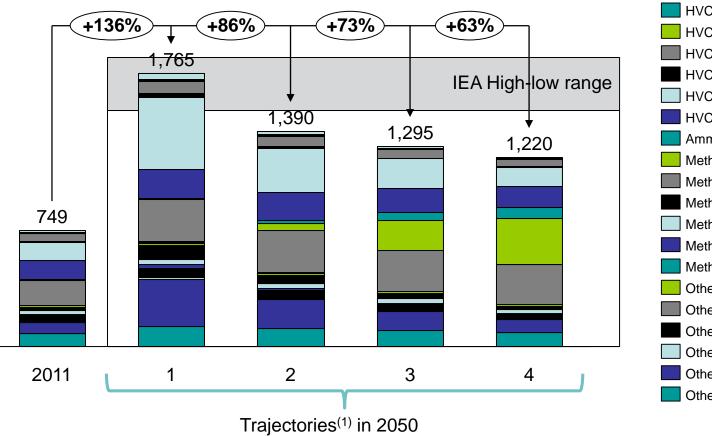
Population evolution	7 billion people in 2010 ⁽³⁾ 8-10 billion people in 2050 ⁽³⁾			
Demand per capita evolution	 HVC: from 44 kg/capita in 2010 to 87-105 kg/capita in 2050 ⁽¹⁾ Ammonia: from 24 kg/capita in 2010 to 28-32 kg/capita in 2050 ⁽¹⁾ Methanol: from 8 kg/capita in 2010 to 22-27 kg/capita in 2050 ⁽¹⁾ Other chemicals: are assumed to follow the trend of HVC 			
Regional changes	 The largest growth in HVC demand is expected to occur in Africa and Middle East European growth is expected to be much more modest Shale gas could have a strong positive impact on US demand 			
Market segment changes	No major shift between transport, infrastructure and buildings is expected But plastics expected to replace other materials in each of these sectors			
In conclusion	 IEA ETP 2012 forecast: 635-872 M tons HVC in 2050 268-310 M tons Ammonia in 2050 213-254 M tons Methanol in 2050 			

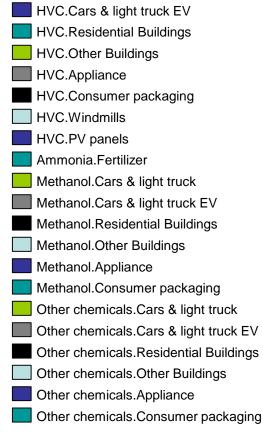



Rationale for expected 2050 chemicals demand (2/2)

Technologies & Products	Evolution driven by	Assumptions (if by product demand)
Packaging	Product demand lever	80-110% evolution by 2050
Consumer products	Product demand lever	80-110% evolution by 2050
Cars & light trucks	Transport model	/
Windmill (blades in carbon fibre)	Estimate from the supply sector	/
PV	Estimate from the supply sector	/
Buildings	Building model	1
Fertilizers	Land model	/

1By 2050, the world population is expected to grow by
~20 to 60%Global
Calculator





NOTE: (1) The population follows the average UN projection in all four trajectories SOURCE: Global calculator model

Annual Chemical production per ambition level⁽¹⁾, by product (M tons)

HVC.Cars & light truck

Agenda

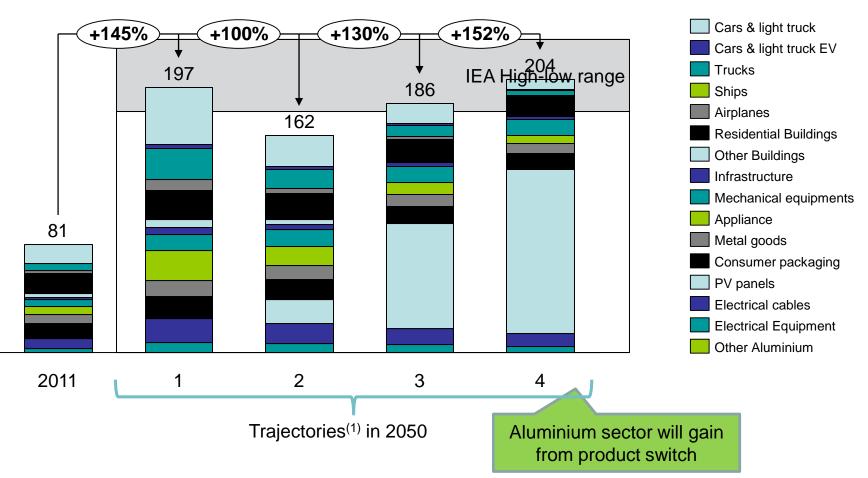
Global **C**alculator

2050 evolution of materials and emissions

Materials demand evolution

- Cross sector demand
- · Cross sector material switch
- Steel
- Chemicals

Aluminium


- Cement
- Paper & Timber

Reduction potential on the manufacturing processes

- Resulting emissions
- Discussion on ambition levels across sectors
- Discussion on CCS
- Steel
- Chemicals
- Aluminium
- Cement
- Paper, Timber & Other

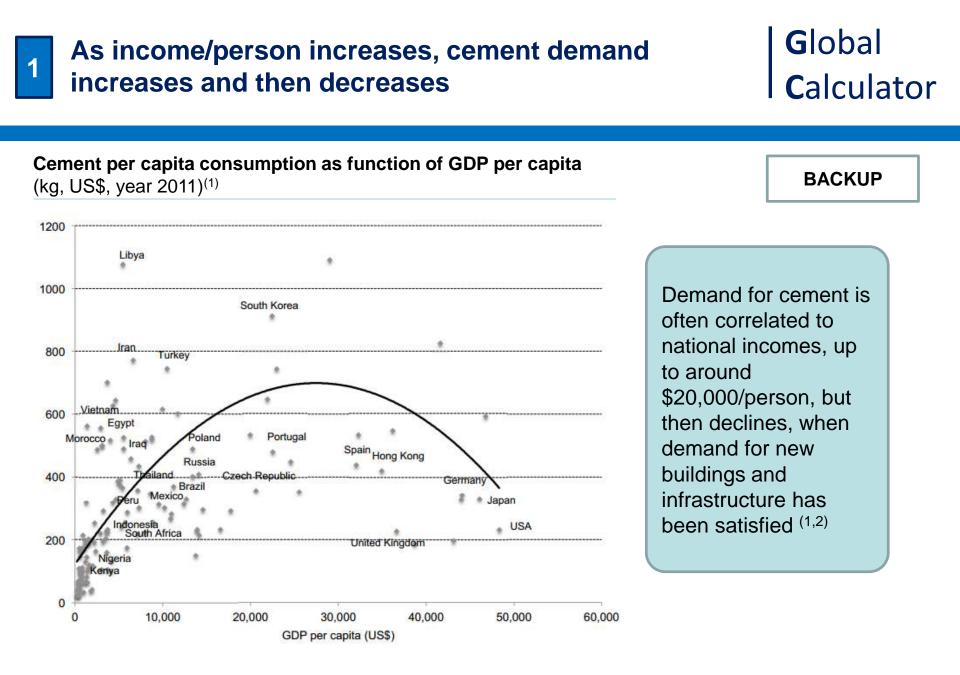
Annual Aluminium production per ambition level⁽¹⁾, by product (M tons)

Agenda

Global **C**alculator

2050 evolution of materials and emissions

Materials demand evolution


- Cross sector demand
- · Cross sector material switch
- Steel
- Chemicals
- Aluminium

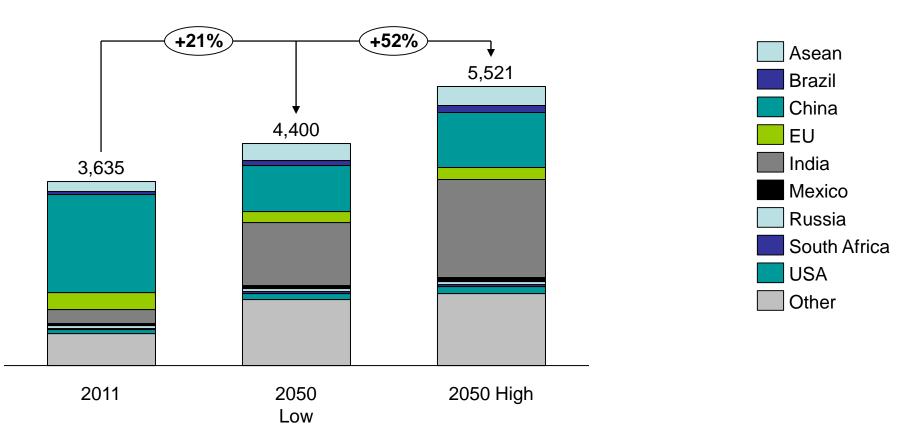
• Cement

• Paper & Timber

Reduction potential on the manufacturing processes

- Resulting emissions
- Discussion on ambition levels across sectors
- Discussion on CCS
- Steel
- Chemicals
- Aluminium
- Cement
- Paper, Timber & Other

SOURCES: (1) International Cement Review, Global cement industry trends (2) With both eyes open

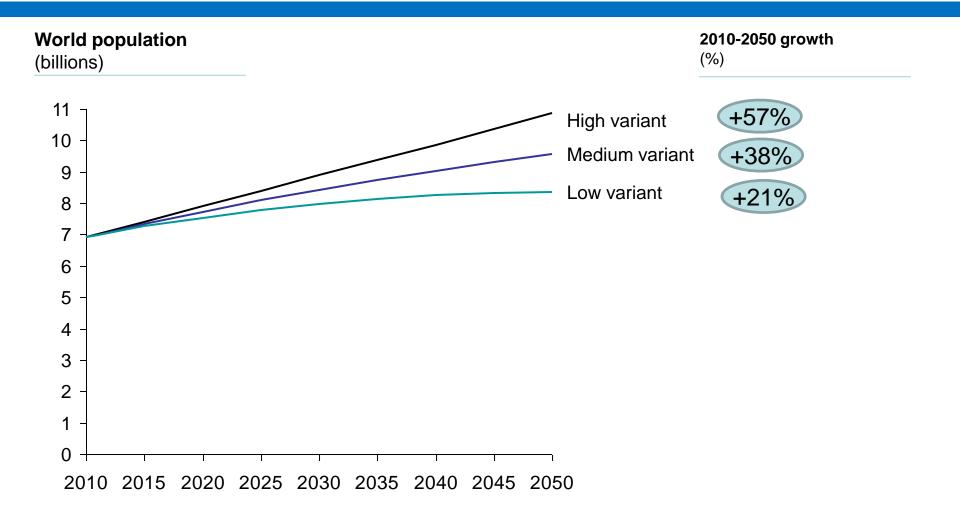


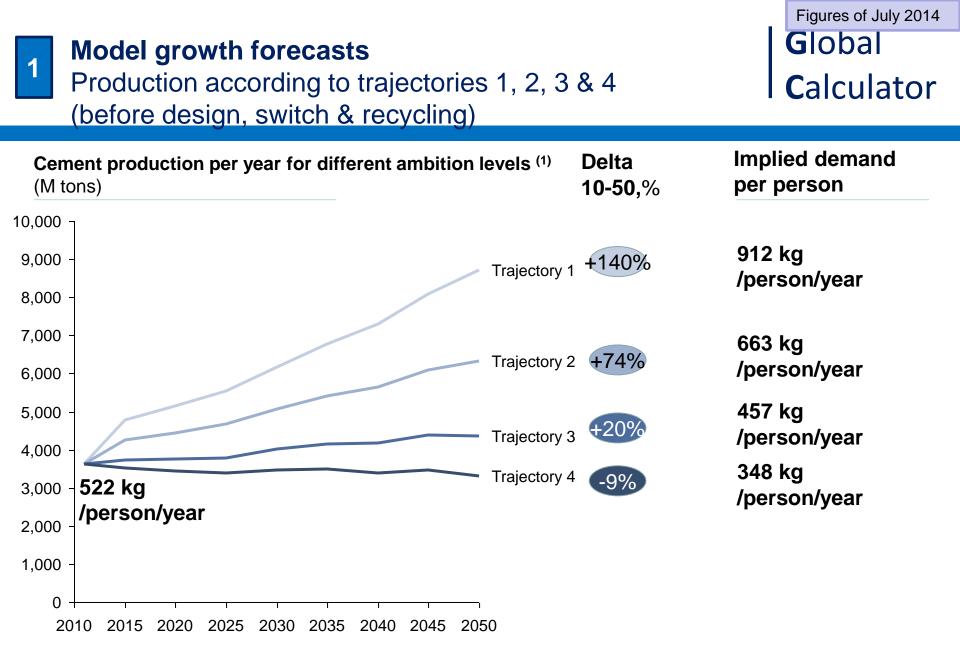
Driver	Rationale	Correlation		
Demography	Per capita consumption is ~450kg	Direct correlation		
Income	Increase with GDP growth up to ~\$20k/person, but then declines, when demand for new buildings and infrastructure has been satisfied	Difficult correlation, as evolution should be modelled per region		
New buildings (residential & commercial, & other)	420 kg cement /m² building 1900 kg concrete/ m² of buildings	Direct correlation (includes the demography and income)		
New infrastructure	450 kg cement/m ² building [?] 1900 kg concrete per m ² of buildings ⁽¹⁾	 Direct correlation (includes the demography and income) but iteration loop Correlated in model to: Travel (passenger +freight) evolution Population (to remove because of double count) 		

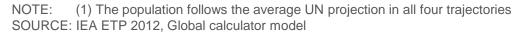
The IEA expects Cement production increase in all scenarios in most regions except for China which starts very high

Production evolution per scenario per region for Cement (Mton)

NOTE : IEA figures of 2009 per geographic area have been extrapolated to 2011 using the trends provided in International Cement Review, Global cement industry trends SOURCE: ETP 2012, IEA

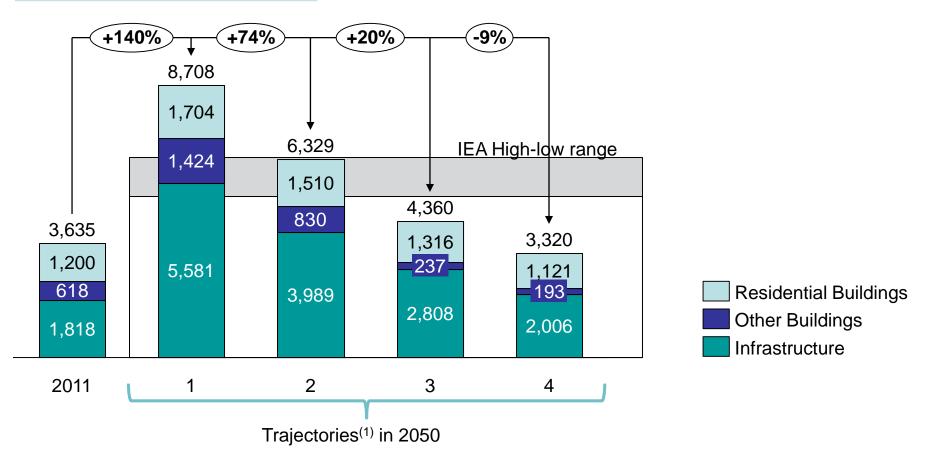

Rationale for expected 2050 cement demand




Population evolution	7 billion people in 2010 ⁽³⁾ 8-10 billion people in 2050 ⁽³⁾				
Demand per capita evolution	Per capita 450 kg of cement per capita in 2011 470-590 kg of cement per person by 2050 				
Regional changes	 Per capita Decrease in China (currently 1218) and Korea (currently 1028) Increase in other non-OECD countries (from 218 to 480-570) In total Cement demand is going to be driven by demand in India and China ⁽²⁾ Cement production more than triples between 2009 and 2050 in India, Africa and other developing countries in Asia (excluding China), with the result that about 45% of all production in 2050 will be in these countries⁽¹⁾ 				
Market segment changes	No major shift between infrastructure and buildings is expected				
In conclusion	 IEA ETP 2012 has 4500Mt to 5500Mt in 2050⁽²⁾ 				

By 2050, the world population is expected by the UN to grow by ~20 to 60%

Global **C**alculator



Annual Cement production per ambition level⁽¹⁾, by product (M tons)

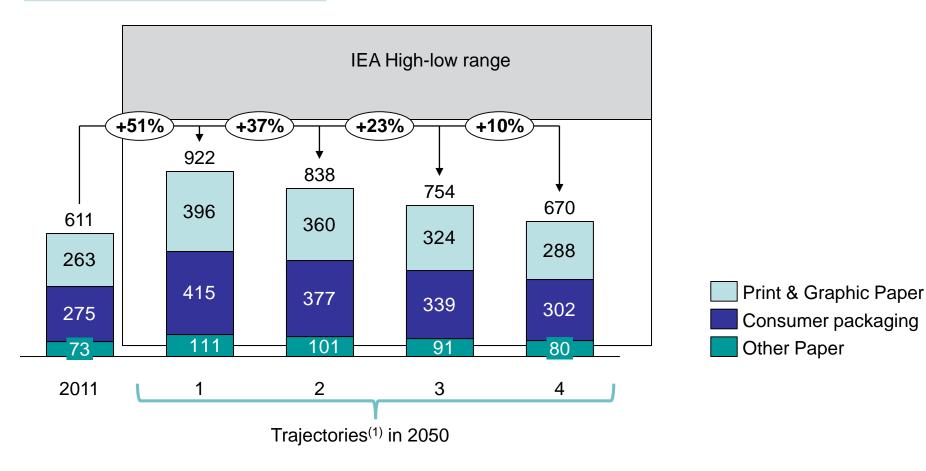
Agenda

Global **C**alculator

2050 evolution of materials and emissions

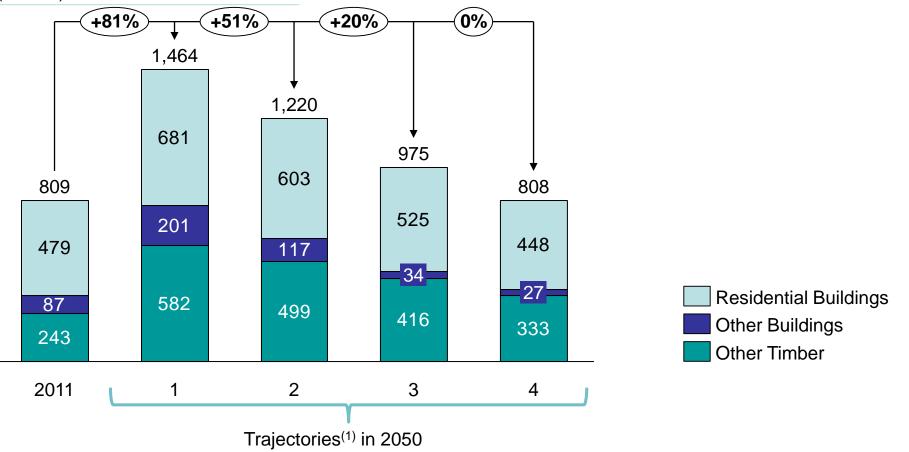
Materials demand evolution

- Cross sector demand
- · Cross sector material switch
- Steel
- Chemicals
- Aluminium
- Cement


• Paper & Timber

Reduction potential on the manufacturing processes

- Resulting emissions
- Discussion on ambition levels across sectors
- Discussion on CCS
- Steel
- Chemicals
- Aluminium
- Cement
- Paper, Timber & Other


Annual Paper production per ambition level⁽¹⁾, by product (M tons)

NOTE: (1) The population follows the average UN projection in all four trajectories SOURCE: IEA ETP 2012, Global calculator model

Annual Timber production per ambition level⁽¹⁾, by product (M tons)

NOTE: (1) The population follows the average UN projection in all four trajectories SOURCE: IEA ETP 2012, Global calculator model

Agenda

Global **C**alculator

2050 evolution of materials and emissions

Materials demand evolution

- Cross sector demand
- · Cross sector material switch
- Steel
- Chemicals
- Aluminium
- Cement
- Paper & Timber

Reduction potential on the manufacturing

processes

- Resulting emissions
- Discussion on ambition levels across sectors
- Discussion on CCS
- Steel
- Chemicals
- Aluminium
- Cement
- Paper, Timber & Other

Agenda

Global **C**alculator

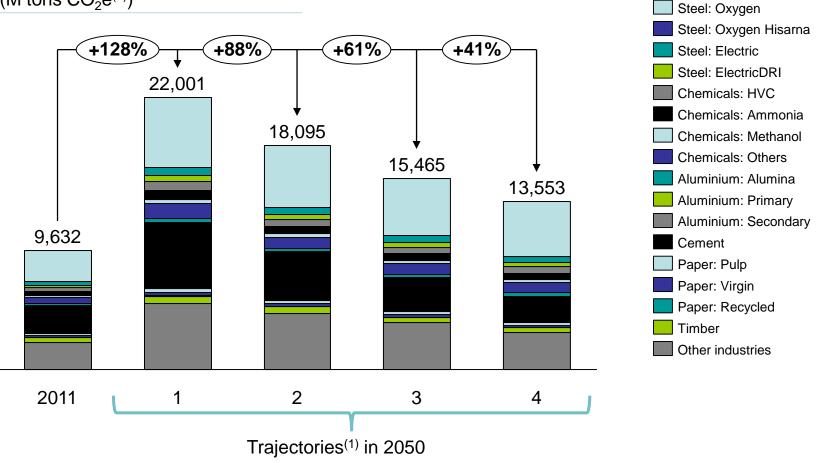
2050 evolution of materials and emissions

Materials demand evolution

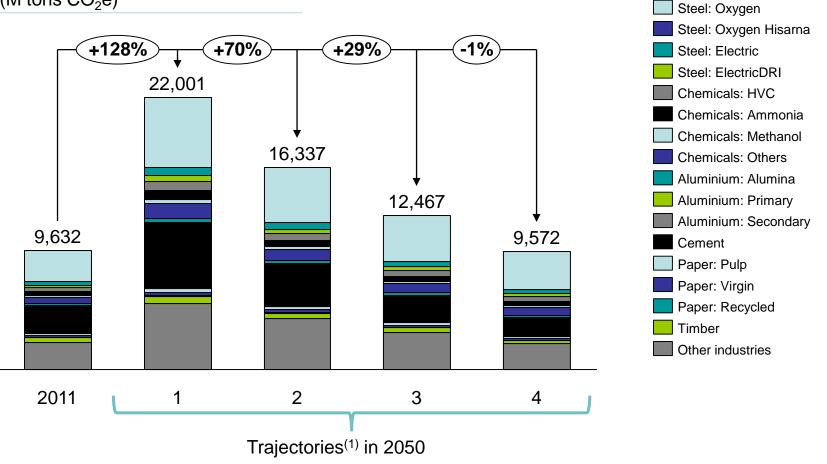
- Cross sector demand
- · Cross sector material switch
- Steel
- Chemicals
- Aluminium
- Cement
- Paper & Timber

Reduction potential on the manufacturing

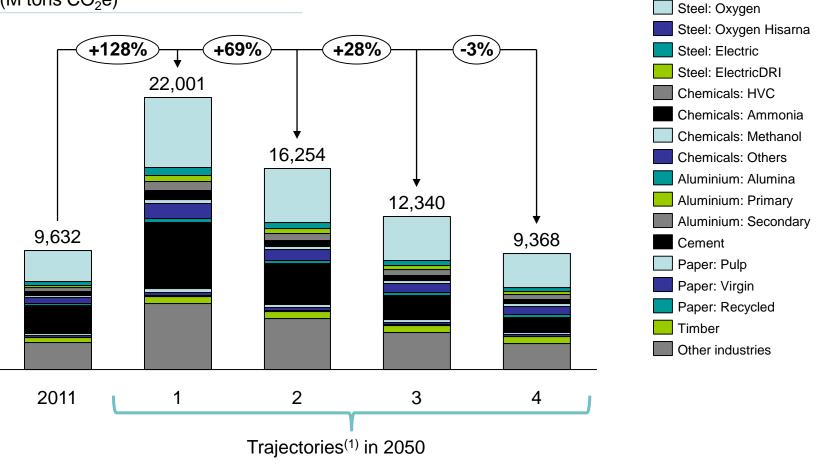
processes

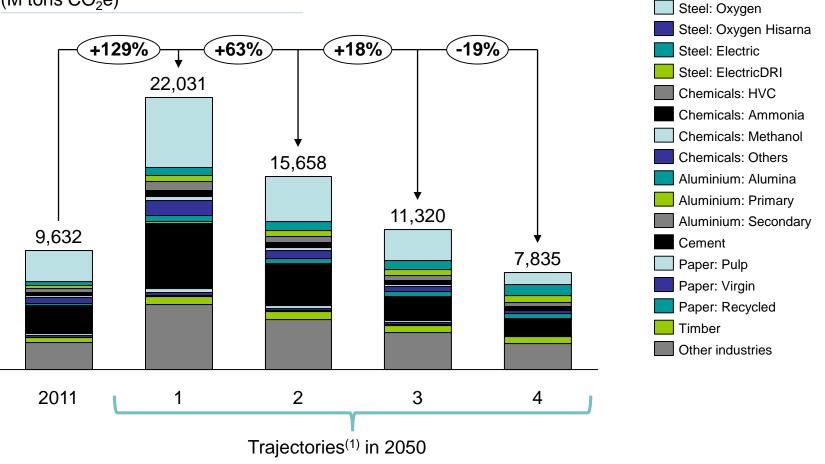

- Resulting emissions
- Discussion on ambition levels across sectors
- Discussion on CCS
- Steel
- Chemicals
- Aluminium
- Cement
- Paper, Timber & Other

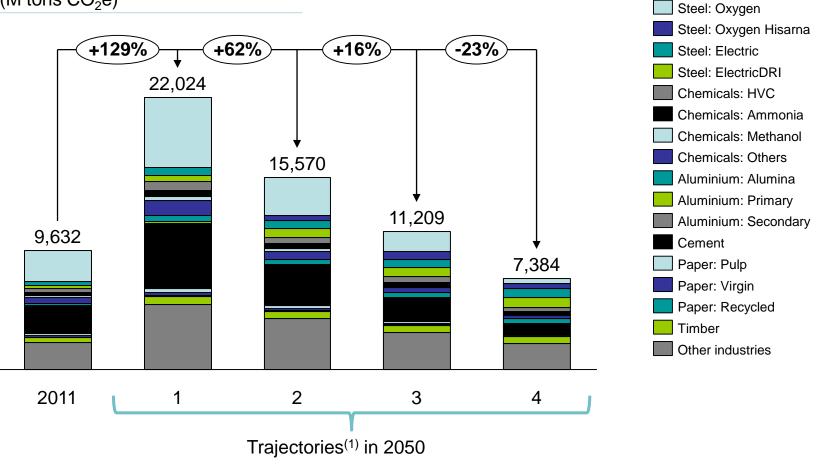
Global **C**alculator

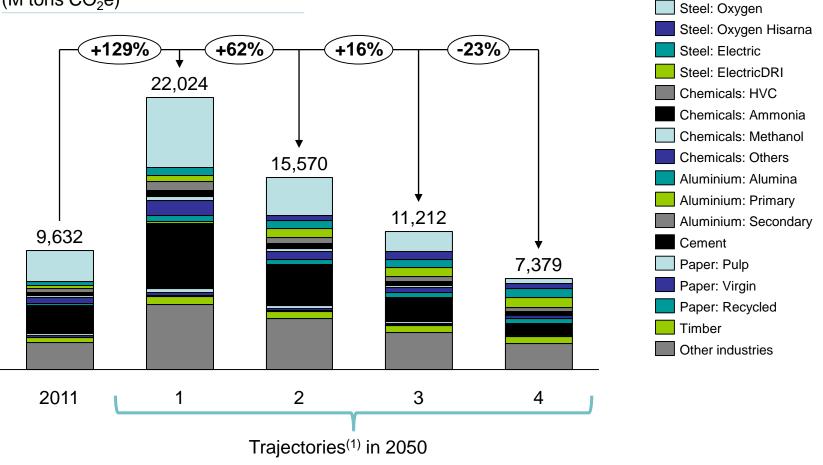

List of actions & levers assessed

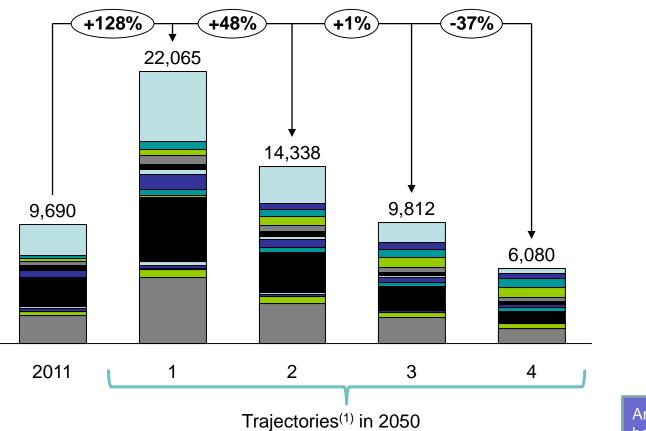
Indu grou	•	Design	Switch	Recycle	Process improvements	Alternativ e fuels	Energy efficiency	CCS
Steel		 Product Design High strength steel 	 Switch to alu, fibres & timber 	 Product recycling % scrap based (for each various technologies exist) 	 Carbon materials reduction Portion of Classic BOF /Top gas recycling & Hisarna/ oxygen/EAF DRI/EAF scrap Smelt reduction, Hydrogen, Electrolysis 	 Coke to gas injection Coal PCI to biomass 	 Material efficiency Energy efficiency (EE) CHP 	• CCS
Che mica	All	 Product design 		Product recyclingMaterial recycling	Process intensificationCatalyst optimization	Oil to gas	 Clustering & integration 	• CCS
ls	HVC		 Switch from steel, alu, cement 	Green chemistry	Included in energy efficiency		• EE	• CCS
	Ammonia			Fertilizers composition	 Included in energy efficiency 		• EE	• CCS
	Methanol						• EE	• CCS
	Other			Green chemistry	 Included in energy efficiency Selective catalytic reduction 	 Hydrogen production by electrolysis Natural gas or biomass 	 EE Switch Mercury to membrane 	• CCS
Alumin	nium	 Product design 	 Switch to fibres 	Product recyclingMaterial recycling	 Included in energy efficiency 	 Gas injection 	• EE	• CCS
Cemen	ht	 Product design 	Switch to Timber & Plastics	Composed/metallurgical cement	Dry process	Coal & oil to Waste & biomass	 EE CHP /heat recovery 	• CCS
Pulp &	paper	• /	• /	More recycled paperOther cellulose sourcesBio-refineries	 Black liquor gasification Drying innovation 	 Coal & oil to gas Coal & oil to biomass 	• EE • CHP	• CCS
Timber	mber • Product • Switch from • / design steel & cement		• /	• /	• /	• /		

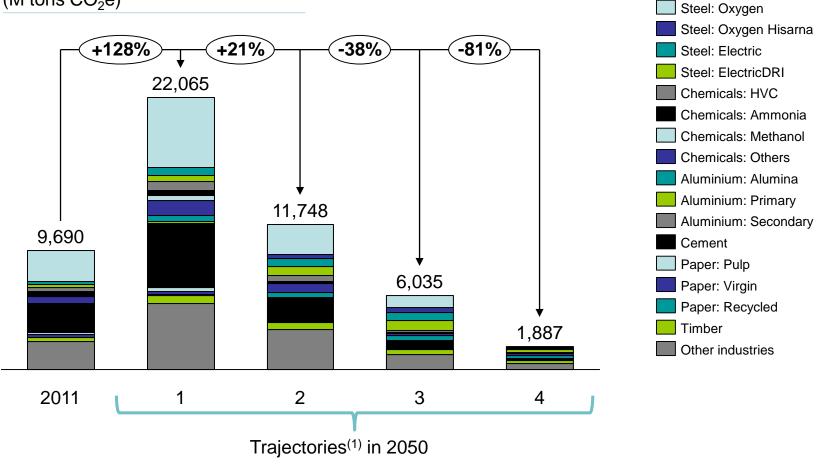




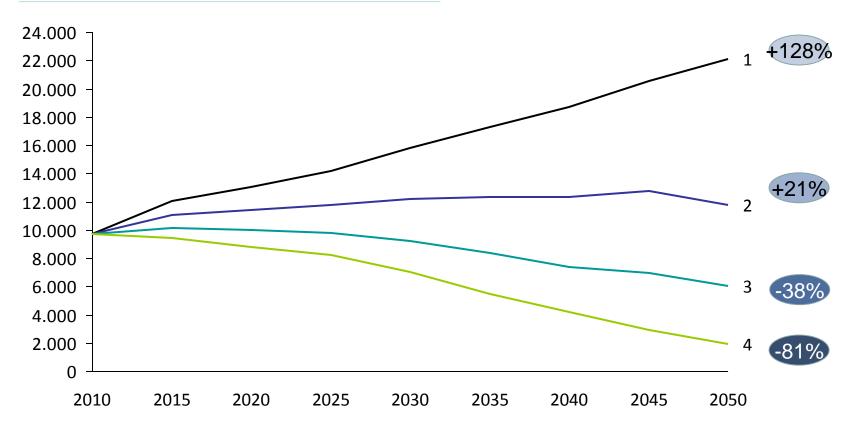








NOTE: (1) The population follows the average UN projection in all four trajectories (2)Assuming biomass emits, not including electricity related emissions SOURCE: IEA ETP 2012, Global calculator model


An emission increase is expected here because of the additional gas consumption in chemicals and paper for the CHPs (while electricity emission are not accounted for in this slide)

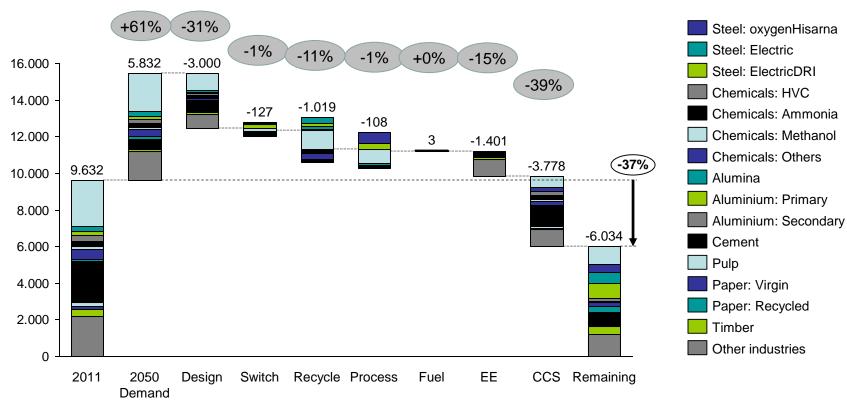
Total GHG emissions for different lever ambition levels (MtonCO₂e)

Reduction potential Details for ambition level 3 (then detailed per industry)

Figures of July 2014 Global Calculator

Total production for ambition level 3

(M tons, % of 2011)


Figures of July 2014

Calculator

Global

Reduction potential Details for ambition level 3⁽¹⁾ (then detailed per industry)

Total GHG emissions in 2050, for ambition level $3^{(1,2)}$, using different levers⁽³⁾ (MtCO₂e, % of 2010)

NOTES: (1) The population follows the average UN projection in all four trajectories

(2) Excluding biomass related reductions & electricity related emissions

(3) Other sectors are impacted by these transitions (e.g. additional emissions are created in the aluminium and plastics sectors) Percentage reductions are calculated vs the 2010 baseline

SOURCE: IEA ETP 2012, Global calculator model

Agenda

Global **C**alculator

2050 evolution of materials and emissions

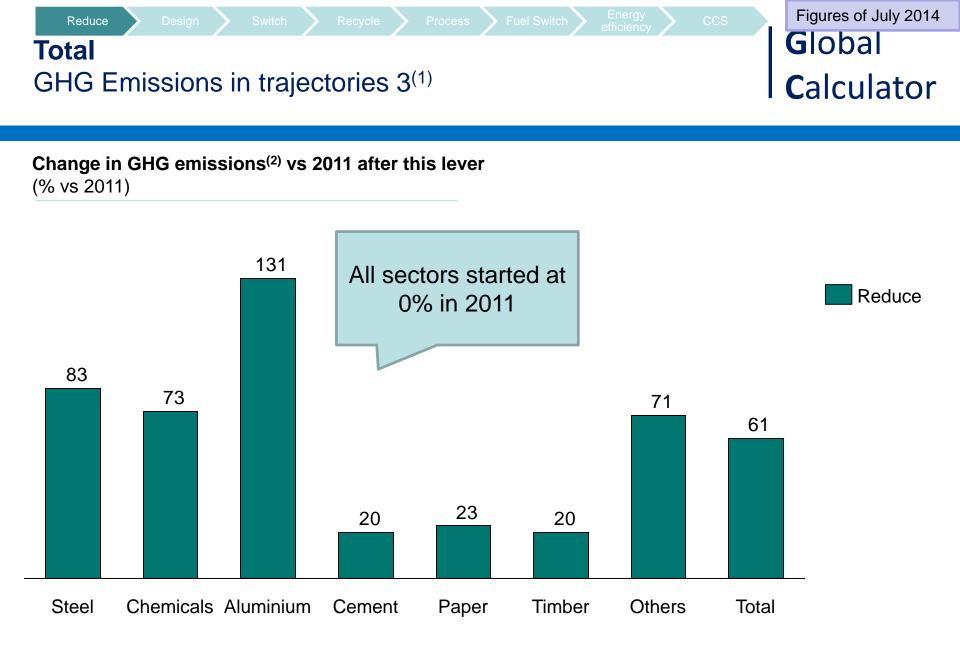
Materials demand evolution

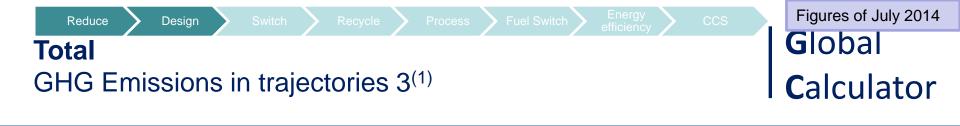
- Cross sector demand
- · Cross sector material switch
- Steel
- Chemicals
- Aluminium
- Cement
- Paper & Timber

Reduction potential on the manufacturing

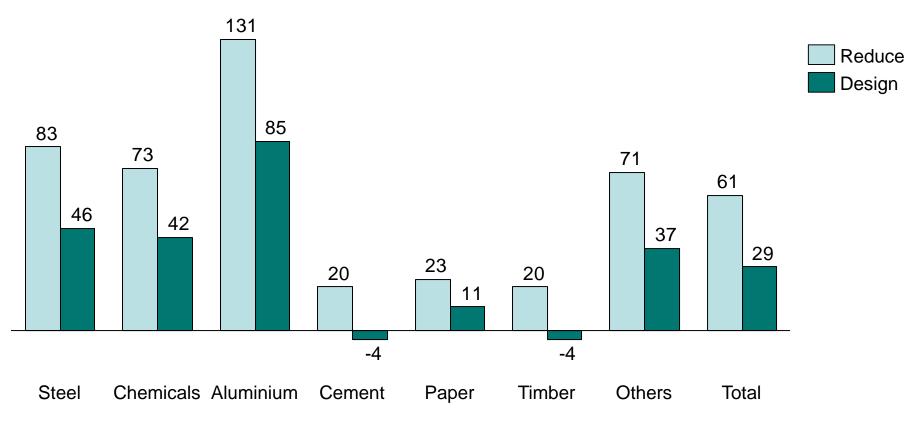
processes

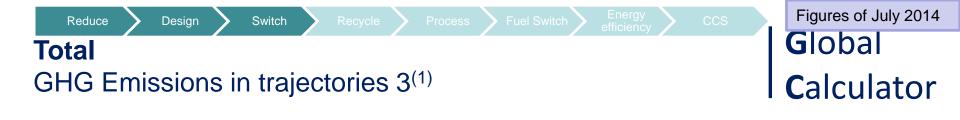
- Resulting emissions
- Discussion on ambition levels across sectors
- Discussion on CCS
- Steel
- Chemicals
- Aluminium
- Cement
- Paper, Timber & Other

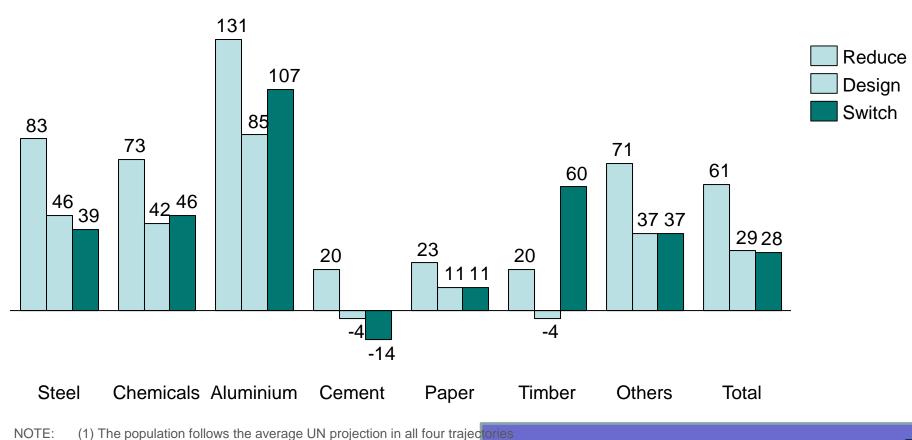



Total emissions, along each step (by materials) (M tons CO₂e, (% evolution vs 2011))

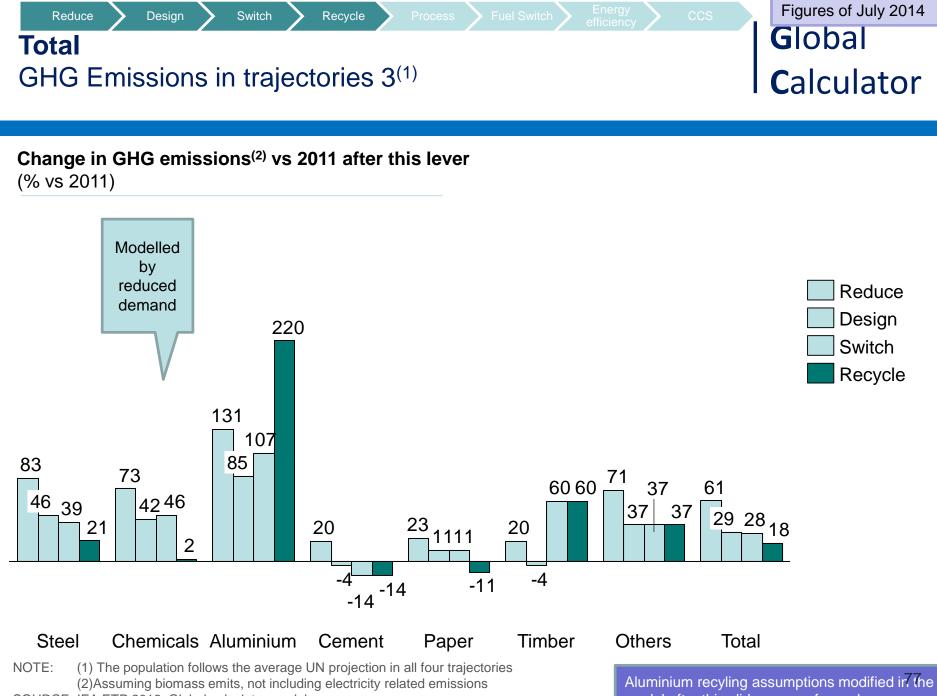
Material	2011	2050							
		Demand	Design	Switch	Recycling	Process	Fuel	EE	CCS
Steel	3.039	5558 (83%)	4447 (46%)	4227 (39%)	3690 (21%)	3718 (22%)	3715 (22%)	3642 (20%)	2842 (-6%)
Chemicals & petrochemicals	1.286	2223 (73%)	1824 (42%)	1880 (46%)	1315 (2%)	1275 (-1%)	1269 (-1%)	1225 (-5%)	466 (-64%)
Aluminium	150	347 (131%)	278 (85%)	311 (107%)	481 (220%)	470 (213%)	470 (213%)	449 (199%)	385 (156%)
Cement	2.206	2646 (20%)	2117 (-4%)	1899 (-14%)	1899 (-14%)	1844 (-16%)	1855 (-16%)	1746 (-21%)	633 (-71%)
Pulp & Paper	393	485 (23%)	436 (11%)	436 (11%)	349 (-11%)	316 (-20%)	316 (-19%)	238 (-39%)	86 (-78%)
Timber	348	419 (20%)	335 (-4%)	557 (60%)	557 (60%)	557 (60%)	557 (60%)	417 (20%)	417 (20%)
Other industries	2.210	3787 (71%)	3030 (37%)	3030 (37%)	3030 (37%)	3030 (37%)	3032 (37%)	2095 (-5%)	1205 (-45%)
Total	9.632	15465 (61%)	12466 (29%)	12339 (28%)	11320 (18%)	11210 (16%)	11214 (16%)	9812 (2%)	6034 (-37%)


Knowing the different sector characteristics, do these reductions seem balanced across sectors ?

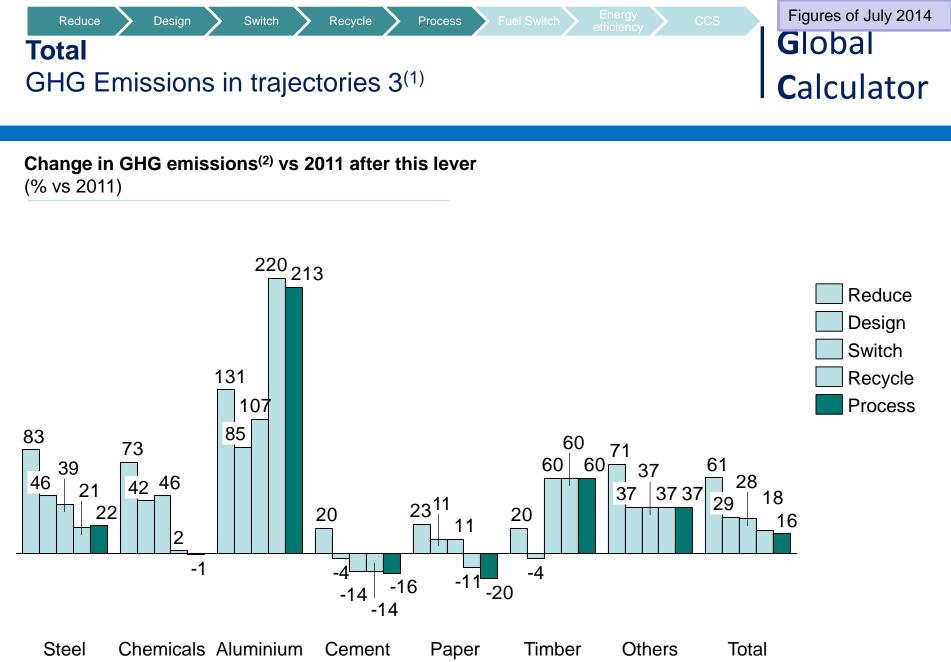

Let's decompose this slide step by step

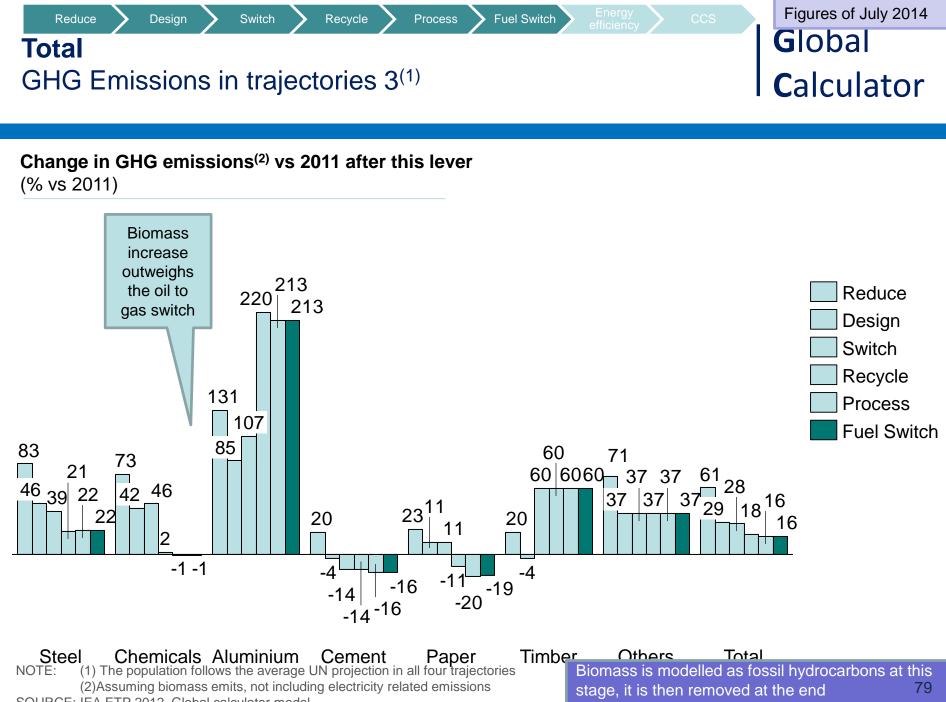


Change in GHG emissions⁽²⁾ vs 2011 after this lever (% vs 2011)



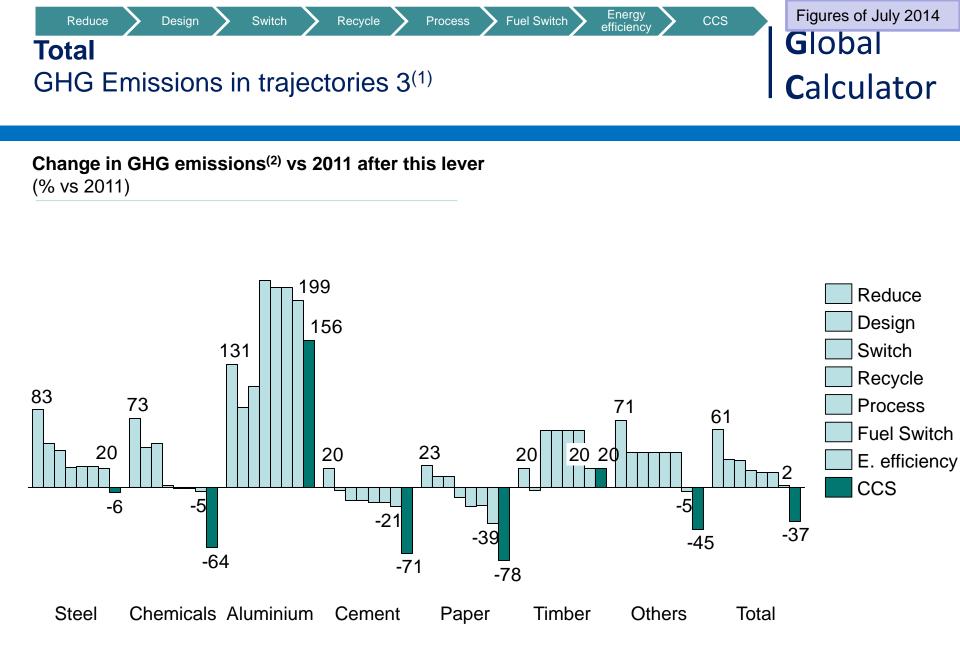
Change in GHG emissions⁽²⁾ vs 2011 after this lever (% vs 2011)




(2)Assuming biomass emits, not including electricity related emissions The fact carbon fibres emit more is currently not modelled SOURCE: IEA ETP 2012, Global calculator model

SOURCE: IEA ETP 2012, Global calculator model

model after this slide was performed



SOURCE: IEA ETP 2012, Global calculator model

SOURCE: IEA ETP 2012, Global calculator model

NOTE: (1) The population follows the average UN projection in all four trajectories (2)Assuming biomass emits, not including electricity related emissions SOURCE: IEA ETP 2012, Global calculator model

Total

Design

Energy efficiency

CCS

Figures of July 2014 Global Calculator

BACKUP

Total emissions, along each step (by technology) (M tons CO₂e, (% evolution vs 2011))

GHG Emissions in trajectories 3

Material	Technology	2011	2050							
Material		2011	Demand	Design	Switch	Recycling	Process	Fuel	EE	CCS
	Oxygen	2.529	4626 (83%)	3701 (46%)	3518 (39%)	2477 (-2%)	1674 (-34%)	1670 (-34%)	1598 (-37%)	1022 (-60%)
Steel	Oxygen Hisarna	-	N/A							
Steel	Electric	300	548 (83%)	438 (46%)	417 (39%)	714 (138%)	625 (109%)	625 (109%)	625 (109%)	625 (109%)
	Electric DRI	210	384 (83%)	307 (46%)	292 (39%)	499 (138%)	794 (278%)	794 (278%)	794 (278%)	794 (278%)
	HVC	324	559 (73%)	459 (42%)	473 (46%)	441 (36%)	420 (30%)	413 (28%)	396 (22%)	198 (-39%)
Chemicals &	Ammonia	286	495 (73%)	406 (42%)	419 (46%)	318 (11%)	318 (11%)	319 (11%)	296 (3%)	44 (-84%)
petrochemicals	Methanol	158	273 (73%)	224 (42%)	231 (46%)	130 (-18%)	130 (-18%)	130 (-18%)	121 (-23%)	18 (-89%)
	Others	518	895 (73%)	735 (42%)	757 (46%)	426 (-18%)	406 (-22%)	406 (-22%)	412 (-21%)	206 (-60%)
	Alumina	106	245 (131%)	196 (85%)	219 (107%)	365 (245%)	365 (245%)	365 (245%)	349 (229%)	349 (229%)
Aluminium	Primary	30	70 (131%)	56 (85%)	62 (107%)	104 (245%)	95 (214%)	95 (214%)	91 (200%)	33 (9%)
	Secondary	14	33 (131%)	26 (85%)	29 (107%)	11 (-20%)	10 (-27%)	10 (-27%)	10 (-31%)	4 (-75%)
Cement	Cement	2.206	2646 (20%)	2117 (-4%)	1899 (-14%)	1899 (-14%)	1844 (-16%)	1855 (-16%)	1746 (-21%)	633 (-71%)
	Pulp	194	240 (23%)	216 (11%)	216 (11%)	163 (-16%)	148 (-24%)	148 (-24%)	109 (-44%)	40 (-80%)
Pulp & Paper	Virgin	176	217 (23%)	195 (11%)	195 (11%)	148 (-16%)	134 (-24%)	134 (-24%)	101 (-42%)	37 (-79%)
	Recycled	23	28 (23%)	26 (11%)	26 (11%)	38 (63%)	34 (49%)	34 (49%)	27 (19%)	10 (-57%)
Timber	Timber	348	419 (20%)	335 (-4%)	557 (60%)	557 (60%)	557 (60%)	557 (60%)	417 (20%)	417 (20%)
Other industries	Other industries	2.210	3787 (71%)	3030 (37%)	3030 (37%)	3030 (37%)	3030 (37%)	3032 (37%)	2095 (-5%)	1205 (-45%)
Total	Total	9.632	15465 (61%)	12466 (29%)	12339 (28%)	11320 (18%)	11210 (16%)	11214 (16%)	9812 (2%)	6034 (-37%)

Knowing the different sector characteristics, do these

reductions seem balanced across sectors ?

Agenda

Global **C**alculator

2050 evolution of materials and emissions

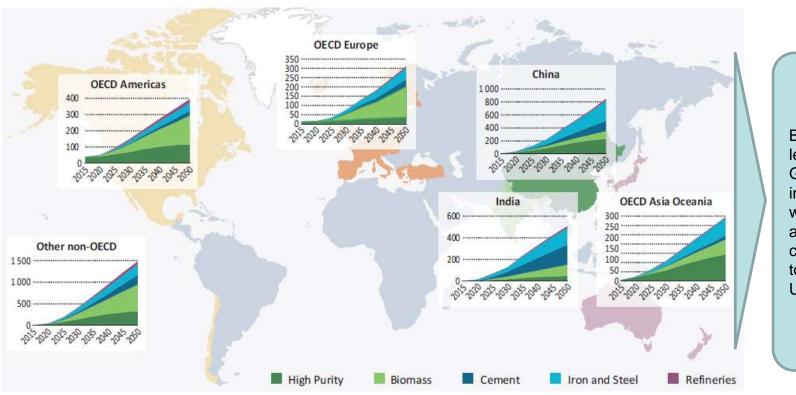
Materials demand evolution

- Cross sector demand
- · Cross sector material switch
- Steel
- Chemicals
- Aluminium
- Cement
- Paper & Timber

Reduction potential on the manufacturing

processes

- Resulting emissions
- Discussion on ambition levels across sectors

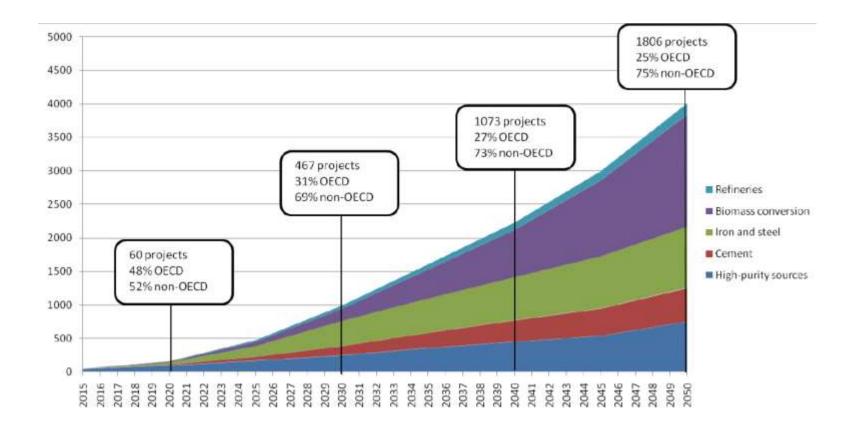

Discussion on CCS

- Steel
- Chemicals
- Aluminium
- Cement
- Paper, Timber & Other

Carbon Capture & Storage Projections by region

Global **C**alculator

Capture rate (MtCO₂/year)

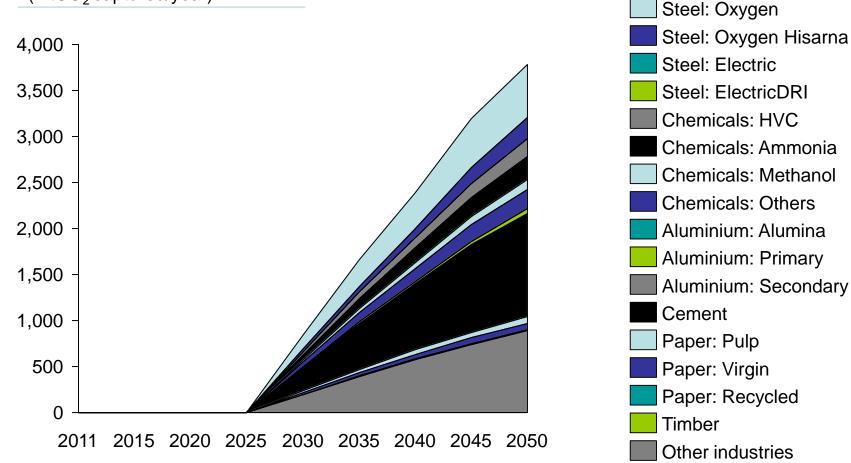


Blue scenario leads to a 4 Gt reduction in 2050, while total additional costs add up to 3 trillion USD by 2050

Carbon Capture & StorageGlobalBlue roadmap goes from 60 projects in 2020 to 1800 in 2050Calculator

Capture rate

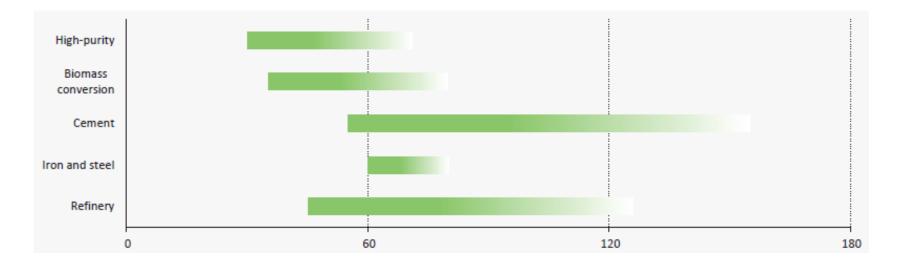
(MtCO₂ captured/year)



Carbon Capture & Storage Industry ambition 3 leads to a similar capture rate

Figures of July 2014 Global Calculator

Capture rate


(MtCO₂ captured/year)

Carbon Capture & Storage Cost per industry

Global **C**alculator

Typical ranges of costs of emission reductions from industrial applications of CCS (USD/tCO₂e avoided)

In addition, an electricity consumption of 0,33 TWh/MtCO₂e captured is modelled

NOTE: The range of costs shown here reflect the regional average costs of applying CCS in each sector, and, therefore, the overall cost of abatement in a sector will be affected by the assumed level of CCS uptake in each sector (IEA, 2009 and IEA and UNIDO 2011). These costs include the cost of capture, transport and storage, but do not assume that storage generates revenues (i.e. CO₂ storage through enhanced oil recovery (EOR) is not considered as a storage option.

SOURCE: ETP 2012, IEA

Sector implications for a blue scenario equivalent

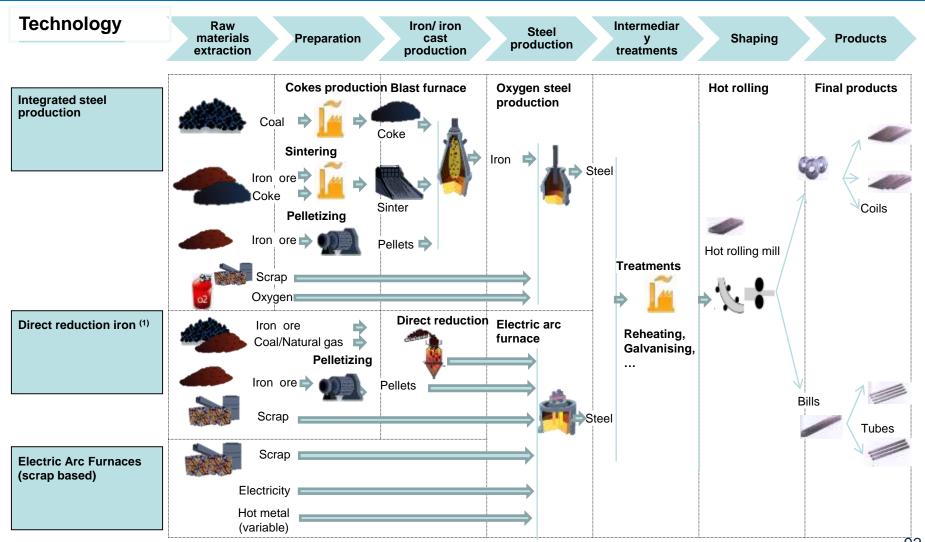
Iron & Steel	 Improve the economics of capture techniques in the iron & steel sector Equip 75% of new production with CCS by 2030 in OECD (50% in non OECD)
Chemicals (High Purity)	 Compile inventory of opportunities & assess costs Perform demonstration projects involving hydrogen, ammonia & ethylene processes
Aluminium	Assumed similar to steel (relatively)
Cement	 Improve the economics of capture techniques under flue gas conditions which are typical for the cement sector Perform full scale plant between 2015 & 2020
Paper	 Assumed similar to Biomass sector objectives (relatively) R&D on biomass gaseification processes Realise full scale plants by 2020
Timber	Assumed similar to paper

Agenda

Global **C**alculator

2050 evolution of materials and emissions

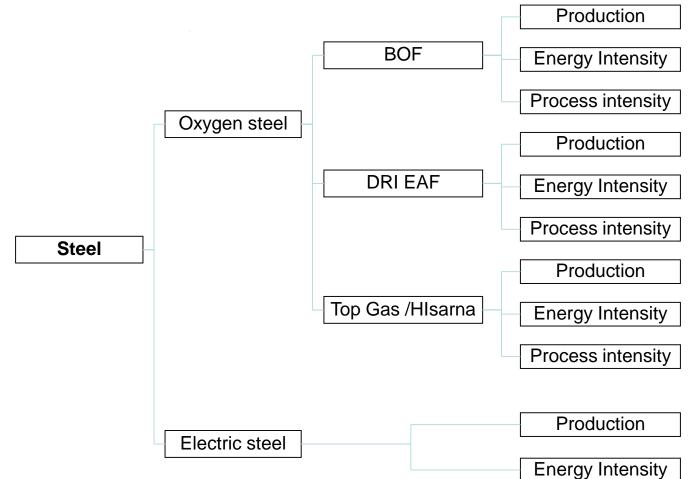
Materials demand evolution


- Cross sector demand
- · Cross sector material switch
- Steel
- Chemicals
- Aluminium
- Cement
- Paper & Timber

Reduction potential on the manufacturing processes

- Resulting emissions
- Discussion on ambition levels across sectors
- Discussion on CCS
- Steel
- Chemicals
- Aluminium
- Cement
- Paper, Timber & Other

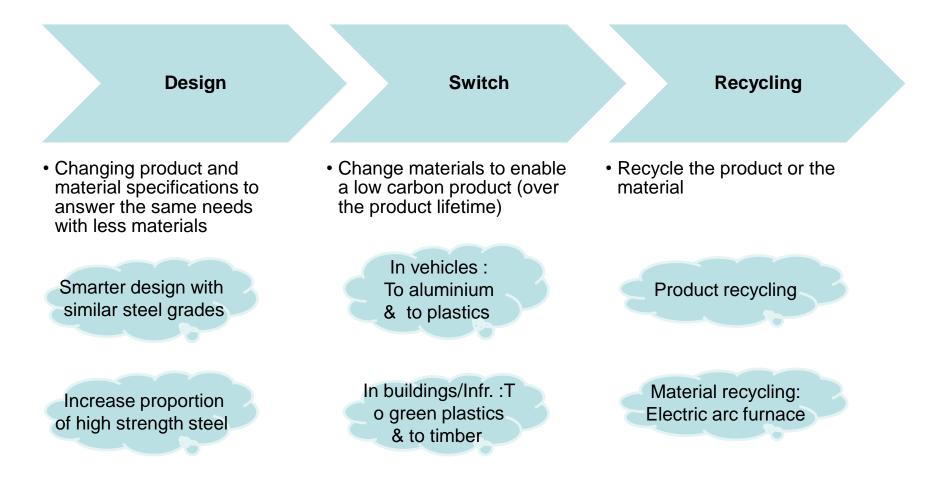
3 technologies are currently used to make most of the steel


Global **C**alculator

NOTE: (1) DRI is illustrated here with the Electric arc furnaces. It can also be performed with Blast furnaces SOURCE: GSV, World Steel, Climact

Steel emissions are being modelled

Steel emission tree



Material demand / product:

Design, Switch & Recycling levers are assessed

Global **C**alculator

List of actions & levers assessed

Design: Smarter design & high strength steel increaseGlobalBetter designs & new steel grades can lower the massCalculatorrequired to fulfil specificationsCalculator

Smarter design

- Smarter design can enable to reduce the materials demand (including steel)
- Examples include:
 - Lighter vehicles
 - · Buildings with less redundancies

High strength steel

- At world level, estimates mention the use of high strength steel to be :
 - Globally at around 20% with a potential of 50%
 - In the automotive industry above 50% already

High strength steel characteristics

Requires less steel

- High strength steel (also called « Hard steel » or « High processability steels ») can be substituted to normal steel but requiring 30% less steel to meet the same standards (e.g. to enable the end product to be as solid)
- For automotive manufacturers, the use of Advanced and Ultra High-Strength steels (AHSS and UHSS), allow to reduce mass of the vehicles by 17% to 25% while maintaining safety standards⁽²⁾
- At global level, this is modelled by a reduction in steel production. At local level, we would assume the installations which would invest in the technology would continue to produce at full capacity.

Impact on the steel production

- Producing higher strength steel does not produce significantly more CO₂e emissions per ton of steel produced. It is estimated that treatments like reheating and galvanizing could increase consumption by 2-5% (with an unknown upside) ^(1,3)
- High strength steel tends to depend more on the primary steel. But this is not exclusive; high strength steel can be made from the secondary steel ⁽³⁾

A) on ULSAB research (WorldAutoSteel), carmakers' own body structure designs

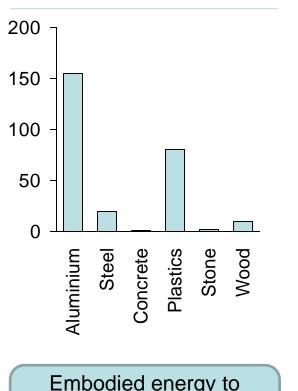
B) 'Determination of Weight Elasticity of Fuel Economy for Conventional ICE Vehicles, Hybrid Vehicles and Fuel Cell Vehicles', fka, June 200796 Climact, interview expert in the context of Belgium Low Carbon 2050, (3) Global Calculator steel consultations

NOTE :Producing higher strength steel does not affect the industry profitability because even if less is required, it is also sold with a higher margin per ton SOURCE: (1) Arcelor, (2) WorldSteel fact sheet the 3Rs (Reduce, Reuse, Recycle), based

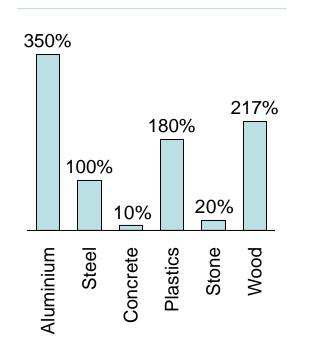
2 Design: Smarter design & high strength steel increase Proposed lever ambitions

Share of high strength steel

(%)


(70)		
50 45 40 35 30 25 20 40% Ambition 4 40% Ambition 3 30% Ambition 2 20% Ambition 1	 High strength steel is morequiring 30% less steel Upside on smart design a downside on additional spectrum to the steel not modelled and assumed to balance one another 	and pecific
	Lever cost ⁽²⁾	
10 -	€/t crude steel	
5 -	Input (fuel & material)	-X
0 +	Other opex	
1990 2000 2010 2020 2030 2040 2050	Capex	0

NOTE:(2) Assuming the additional capex is balanced by the input reduction SOURCE: Climact national consultations


2 Material switch 2 Steel is a relatively cheap material

Global **C**alculator

Embodied energy (Gj/t)

Relative useful costs ⁽¹⁾ (relative to steel at 100%)

Embodied energy to convert the material in useful form

Relative cost per tonne to convert the materials in useful form

- Compared to other metals, steel has lower embodies energy and costs
- Concrete and stone are not substitutes as they are weak in tension
- Aluminium does not score well but enables lighter products

NOTE : (1) Refer to "With both eyes open" for more details on the definition of useful costs SOURCE: (1) With both eyes open

Material switch

Steel can be substituted to enable less CO₂ emissions along product life cycles

Global **C**alculator

Materials which can replace /be replaced by steel

	Characteristics		Steel replacement a	assumption	١	
	Advantages	Weaknesses	Vehicles (8%)	Buildings/ Infrastructure (38%	%)	
Aluminium	Density	Less strong, less recyclable Higher cost & embodied energy	Up to 20% steel can be replaced by aluminium	Not applicable		
Concrete	Steel compatibility (rebar), Low cost & embodied energy, no corrosion	Weak in tension Non recyclable	Not applicable	Would be modelled by smart design		
Plastics (Composite materials, glass/ carbon fibres reinforced epoxies)	Density, Strength per density (of some plastic types)	Lower recyclability Less reparable (e.g. carbon fibre cars) Higher embodied energy Difficult manufacturing	Up to 20% steel can be replaced by carbon fibre (HVC)	Not applicable		
Stone & Masonry	Lower embodied emissions	Must be reinforced with mortar (from cement) Cannot be reinforced or moulded into shapes	Not applicable	Not applicable		
Timber	Strength and stiffness per density ⁽¹⁾	Less durable, requires protection against fire and rot, less stable Lower, uniformity	Not applicable	Up to 20% steel can be replaced by timber in buildings	99	

(1) With both eyes open (Orr et Al. (2010), research of efficient concrete shapes

Material switch Proposed lever ambitions

approximated through the specific Young modulus

(2) Assumption this material switch does not impact the product life

Steel > Plastics

0

Level 1	Level 2	Level 3	Level 4
Minimum effort (following current regulation)	Moderate effort easily reached according to most experts	Significant effort requiring cultural change and/or important financial investments	Maximum effort to reach results close to technical and physical constraints
 Vehicles: 0% switch Buildings: 0% switch Buildings/Infra 5% substitution aluminium, 5% plastics Buildings/Infra 5% substitution timber 		 Vehicles: 10% substitution by aluminium, 10% by plastics Buildings/Infra: 10% substitution by timber 	aluminium, 20% by plasticsBuildings/Infra:
•			ever cost /t steel)
			Steel→ Aluminium 0
NOTE: (1) Amount of one ma	terial required to replace another material i	is	Steel \rightarrow Timber 0
	the specific Young modulus		Ote al N. Dis ation

Reusing the products

2

The steel product reusing lever is not modelled

Global **C**alculator

Rationale on reusing the products

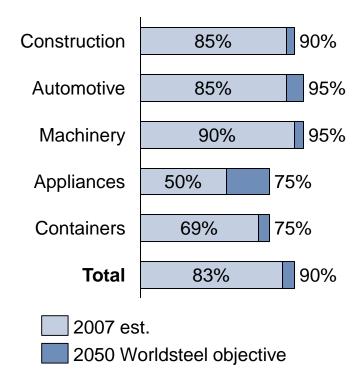
- When using steel based products, both the products (cars, appliances, etc.) and the materials (scrap steel) can be reused
- The products reusing lever is currently not modelled, this is due to lack of data, and perception this lever has a lower impact

Illustrations on Products

 In North America approximately 33% of the straight railway track sections purchased comes from used rail that is disassembled at redevelopment sites (1) 2

Materials recycling : Scrap based steel Up to 90% of steel could come from be recycled streams

Rationale on steel recycling

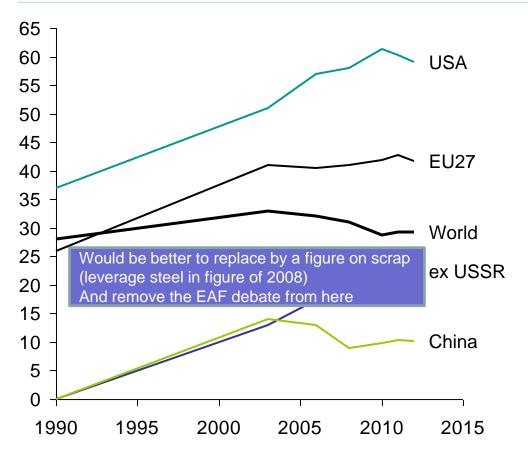

by 2050

- Steel is the world's most recycled material ⁽³⁾
- We are still a long way from collecting all our discarded metals for recycling
 - Steel reinforcement bars in sub surface concrete (e.g. foundations and tunnels) are currently not extracted at end of life ⁽²⁾
 - Deep sea line pipes are not removed at the end of their lives
- 100-150\$/ton scrap is required in order to have economically viable recovery of scrap (high scrap prices will drive up the scrap collection price) ⁽⁴⁾
- Maximum recycling rates for steel might be at 90%⁽¹⁾

Worldsteel recycling rate targets ⁽³⁾ (2007 est. and 2050 objectives, %)

Global

Calculator


2

Materials recycling: Scrap based steel

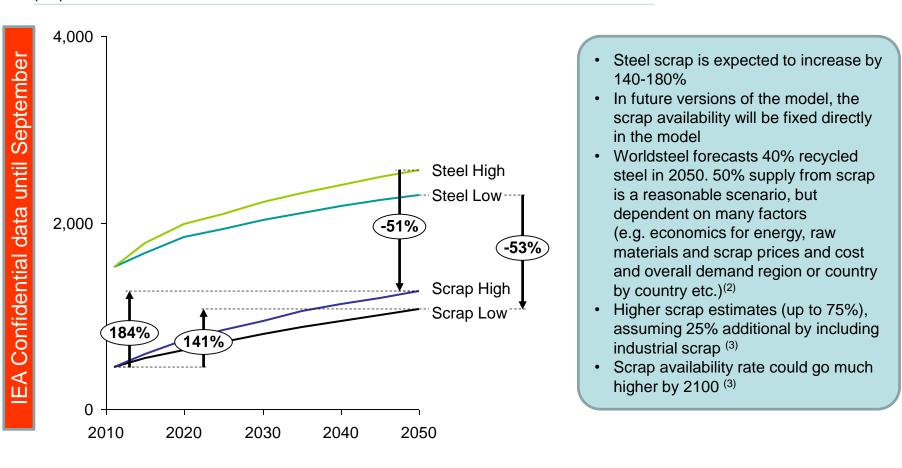
Recycled steel is at~30% well below the 80%, this is because of a) the limited availability and b) the time lag

Global **C**alculator

Historic evolution of the Electric steel production in the total crude steel production (%) $^{(1)}$

- Steel Production and therefore reserves are increasing worldwide⁽²⁾
- The steel stock should, by some estimates, become self sufficient in one century
- World reduction is explained by growth in developing countries
- Historically, the proportion of electric steel has increased in developed geographic areas; as countries develop, they produce more metal scrap
- Fast growing countries favour oxygen steel production (as the availability of scrap is not sufficient to meet the rapidly growing production)
- There is a large increasing amount of steel embedded in products that are still in use and have not reached the end of their lifespan. Steel can remain more than 50 years in the lifecycle which creates a lag between production increase and available scrap metal increase ⁽³⁾

NOTES: (1) the EAF includes the both 100% scrap based EAF as well as EAF that uses DRI and/or hot metal in addition to scrap
 (3) Length is function of the sector. 50 years is typically applicable in the buildings sector, automotive and consumer goods sector typically have shorter life times

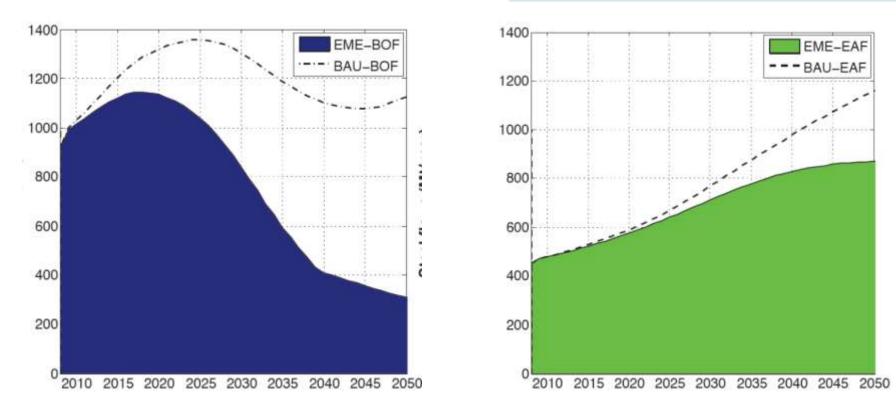

SOURCE: IISI, (1)Worldsteel in figures, Eurostat, Groupement de la Sidérurgie, (2) McKinsey

Materials recycling: Scrap based steel Scrap availability is limited

2

Global **C**alculator

IEA estimates on the availability of scrap in the 2-4-6DS scenarios (Mt)


Materials recycling: Scrap based steelGlobalIn lower demand scenario, NTNU & Cambridge scenariosCalculatorforecast earlier market saturation and higher scrap%Calculator

(Mt/year)

Secondary steel making (from scrap)

Primary steel flows (from ore) (Mt/year)

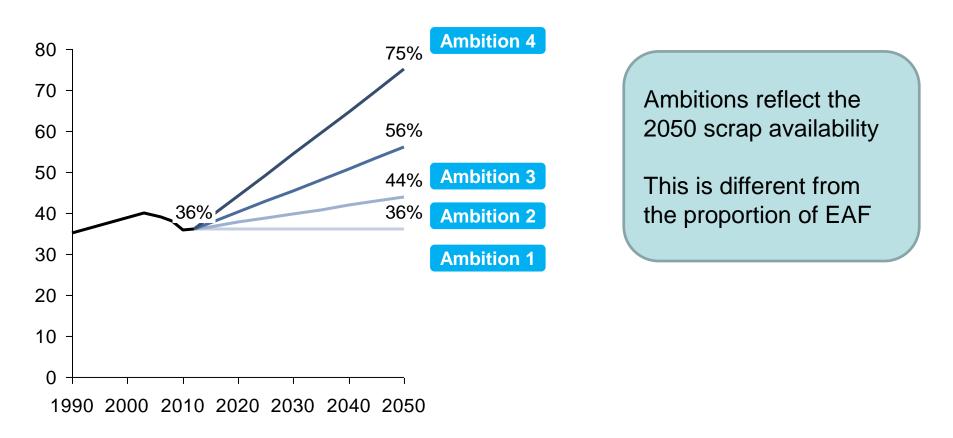
2

SOURCE: NTNU & Cambride University (2014 04 10 International Materials Education Symposium)

Materials recycling: Scrap based steel Transition to EAF has impacts in terms of product quality and price

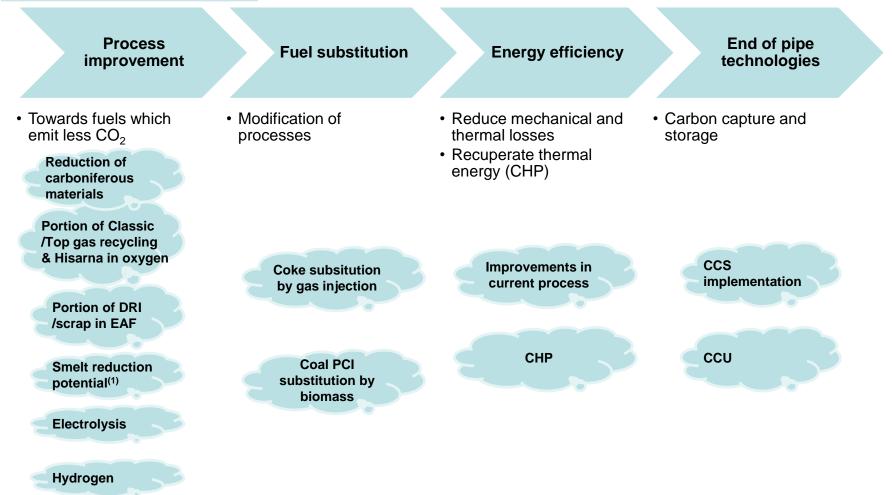
EAF increase implications

- The cost /ton of EAF steel is higher ^(1,3,4) because of the energy consumption ⁽⁶⁾
- EAF enables to produce the steel for all applications⁽⁷⁾. However, BOF production produces higher quality steel for some applications (e.g. automotive sector) ⁽³⁾
- High EAF scenarios require higher quality Scrap metals collection
- The reduction of BOF has a negative impact on other industries (e.g. cement uses blast furnaces slag to produce composed/metallurgic cements which emit less CO₂ ⁽²⁾)
- In a world with overcapacity, EAF ovens offer more flexibility to be turned on or off


Global

Calculator

Scrap steel production in the total crude steel production (%)



3

Carbon intensity of material production

Process improvements, fuel mixes, energy efficiency & CCS are then assessed

List of actions & levers assessed

NOTE: Process choice has consequences on applicability of other levers Some combinations are exclusive whilst others can be added in sequential order SOURCE: (1) (redundant with Ulcored while we represent HIsarna in this analysis

Global

Calculator

3

Process : Reduction of carboniferous materialsGlobalThere is limited further potential in reducing the amount of
carboniferous materials per ton of steelCalculator

Evolution of carboniferous materials to produce liquid iron cast (Kg CO_2e/t liquid iron cast)

- The amounts of carboniferous materials per ton of steel have been significantly reduced during the last decades
- To date, the blast furnaces in the EU15 use today an average of 0,49 kg of carboniferous materials per kg of liquid iron cast produced⁽¹⁾, or 115kg of input materials for 100kg of steel ⁽²⁾

It is considered this lever has no additional potential

3 ULCOS is performing prototypes to assess the feasibility of four technologies

Global **C**alculator

		ILCORED	HERRY.	
Technology	Top gas recycling (+ Carbon capture)	ULCORED + EAF (+ Carbon Capture)	HIsarna smelter (+ Carbon capture)	Ulcowin – Electrolysis
Process	 Recycling CO (reducing agent) from blast furnace waste gas Reduces coke and coal requirements Cokes and sinter production unchanged 	 Direct reduction process Uses natural gas as reducing agent No coke required 	 Combines all the heat processes in one Direct use of ore and coal : 20 % reduction of CO2 – 80 % with CC Significant coal savings - partial substitution by biomass, natural gas, or H2 Substantial reduction of other emissions 	
Maturity	 Laboratory: done Pilot: done Demonstrator: tbc Deployment: > 2020 onwards 	 Laboratory: done Pilot: 2013 Demonstrator: 2020 Deployment: > 2030 Other direct reduction (MIDREX is industrial) 	 Laboratory: done Pilot: 2011-2013TATA steel IJmuiden Demonstrator: 2020 Deployment: > 2030 Other smelters (FINEX and COREX are industrial) 	 Laboratory: ongoing Pilot: 2020 Demonstrator: 2030 Deployment: > 2040 Experimental (current pilots work at ~5kg capacity per day)

3

Process changes

For each ambition level, a combination of the various technologies is proposed

Technology applicability along the different ambitions

(% of total steel production, (allocation available of scrap))

	Oxygen steel			Electric stee	I		Proportion	
Ambition	Classic	Top Gas Recyling (HIsarna, not ULCORED)	Hydrogen based reduction	DRI EAF	EAF (Scrap)	Electrolysis	of scrap in steel production	
1	√70% (7,7% scrap)	✓0% (-scrap)	✓_	√ 5% (3,3% scrap)	✓ 25% (25% scrap)	-	(36%)	
2	✓ 61% (8,5% scrap)	✓ 2% (0,1% scrap)	<u>√</u> _	√6% (4,2% scrap)	✓ 31% (31% scrap)	-	(44%)	
3	✓ 48% (9,8% scrap)	✓ 5% (0,5% scrap)	<u>√</u> _	✓ 8% (5,2% scrap)	✓ 40% (40% scrap)	-	(56%)	
4	✓ 25% (10,0%scrap)	✓ 10% (3% scrap)	<u>√</u> _	✓ 10% (7% scrap)	✓ 55% (55% scrap)	-	(75%)	

NOTES: Assumption all scrap is used

This lever should be used jointly with the scrap availability lever, specific consumption of the various routes is tailored, assuming 100% scrap based to be 3 times less energy intensive.

To limit economic damage, classic oxygen plants are not all decommissions by 2050, and some are converted to Top gas.

Steel overcapacity context will be adverse to change and investments

SOURCE: Global Calculator consultation & analysis

Process changes For each process route, costs are applied

Global **C**alculator

3

€/t crude steel	Retrofit	New
Input	117,36	117,36
Other opex	371,64	371,64
Capex	171	441

Scrap based EAF cost assumptions ⁽²⁾ €/t crude steel				
	Input (fuel & material)	58,68		
	Other opex	430,32		
	Capex	184		

DRI based EAF cost assumptions ⁽²⁾ €/t crude steel				
	Input (fuel & material)	74,36		
	Other opex	497,64		
	Capex	414		

SOURCE: (1) Eurofer Steel Roadmap towards a low carbon economy 2050 (2013) NOTES (2) Excluding decommissioning costs

Process changes

3

Top gas/HIsarna, Electric steel and Electrolysis condition the applicability of the other levers

Lever applicability along the main technical options

		Oxygen steel			Electric ste		
Type of lever	Improvement Lever	Classic	Top Gas Recyling (HIsarna, not ULCORED)	Hydrogen based reduction	EAF (Scrap)	DRI EAF	Electrolysis
Product mix	Increase in higher strength steel	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Process improve	Reduction of carboniferous materials (non-fuel related)	/ (Sidmar close to limits)	(already included)	/	/	(already include d)	✓ (reduction TBC)
ment	Smelt reduction	/	(redundant with Ulcored /HIsarna)	/	/	/	/
Alternativ	Coal substitution by gas injection	\checkmark	/	/	/	/	/
e fuels	Coal substitution by biomass	\checkmark	/	/	/	/	/
Energy efficiency	Reduce mechanical and thermal losses	\checkmark	/	/	/	/	/
	CHP potential	/	/	/	/	/	/
End of pipe	Carbon capture & storage	✓ (less likely)	\checkmark	/	/	\checkmark	/

Global **C**alculator

Insights applicable along Process improvements, fuel substitution and energy efficiency

- The recent rapid expansion of crude steel production and the resulting additional capacity positively affected the energy efficiency of the industry ⁽¹⁾
- Additional capacity has reduced the average age of the capital stock, and the new plants tend to be more energy efficient, although not all have introduced BATs
- In several countries, existing furnaces have been retrofitted with energy efficient equipment, and energy efficiency policies have led to the early closure of inefficient plants
- The sector still has the technical potential to further reduce energy consumption by approximately 20% ⁽²⁾
- There is a multitude of process improvements such as the Near net shape casting which can still be implemented

Process improvements: Penetration of DRI EAF Proposed lever ambitions

Comments on EAF DRI technology

- With the data used, EAF DRI has a specific consumption close to 4 times the Scrap EAF and close to the BOF
- It is to note that some sources mention that DRI enables a 20% energy consumption reduction vs BOF⁽¹⁾
- DRI based EAF production is expected to gain share in total crude steel production
- Assumption DRI will be used in the future unless we don't have any more fracking
- In level 4, this will be 0% (no scrap left)

Process improvements: Top-gas recirculation/HIsarna Proposed lever ambitions

Comments on Top-gas and Hisarna technology

- Greenfield full HIsarna implementation are modelled, these enable a 35% consumption reduction⁽³⁾
- Carbon capture is modelled by the CCS lever (not here)

NOTES

3

- (1) Eurofer Steel Roadmap towards a low carbon economy 2050 (2013)
- (2) Assuming the additional capex, is balanced by the input reduction
- (3) Belgian consultation

Process improvements: Hydrogen based reduction Proposed lever ambitions

Level 1	Level 2	Level 3	Level 4
Minimum effort (following current regulation)	Moderate effort easily reached according to most experts	Significant effort requiring cultural change and/or important financial investments	Maximum effort to reach results close to technical and physical constraints
• 0%	• 0%	• 0%	• 0%
•	III		•
	his technology is consid arough and we therefore arr	-	

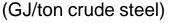
Process improvements: Electrolysis Proposed lever ambitions

Lev	vel 1	Level 2	Level 3	Level 4		
Minimum e (following c regulation)	current	reached according to requiring cultural reach results		Maximum effort to reach results close to technical and physical constraints		
• 0%		• 0%	• 0%	• 0%		
•		m	1	•		
	This technology is considered a far away breakthrough (current pilots work at ~5kg capacity per day ⁽¹⁾) and we therefore still do not include it in level 4 ambition					

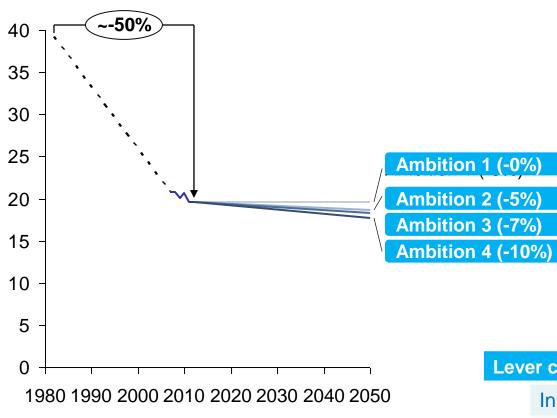
Fuel substitution : Coke substitution by Gas injection Proposed lever ambitions

Level 1	Level 2	Level 3	Level 4	
Minimum effort (following current regulation)	Moderate effort easily reached according to most experts	Significant effort requiring cultural change and/or important financial investments	Maximum effort to reach results close to technical and physical constraints	
 0% coke replaced by gas in non- Hisarna oxygen 	 2% coke replaced by gas in non- Hisarna oxygen 	 3% coke replaced by gas in non- Hisarna oxygen 	 5% coke replaced by gas in non- Hisarna oxygen 	
•	m	Lever cost €/t crude steel		
		Input (fuel	& material) Cost of fuels	
		Other opex	C O	

Fuel substitution : Coal substitution by biomass Proposed lever ambitions



Level 1	Level 2	Level 3	Le	evel 4
Minimum effort (following current regulation)	Moderate effort easily reached according to most experts	Significant effort requiring cultural change and/or important financial investments	Maximum effort to reach results close to technical and physical constraints	
• /	 Substitution of 15% coal PCI by biomass in non Hisarna oxygen 	• idem level 2	• idem le	evel 2
•		Lever cost €/t crude steel	1	
This techno	This technology has limited		k material)	Cost of fuels
	after HIsarna	Other opex		0
		Capex		


Energy (and material) efficiency

Energy efficiency has drastically improved over the last 30 Calculator years, leaving limited improvement on existing technology

Energy intensity (1) (2)

3

SOURCE: (1) Worldsteel sustainable steel policy & indicators 2013

(4) Global Calculator consultation

NOTE:

(2) Worldsteel: Steel's contribution to a low carbon future

(3) Assuming the additional capex is balanced by the input reduction

 With strong historical improvement in energy efficiency, we assume limited further improvement (with same technologies)

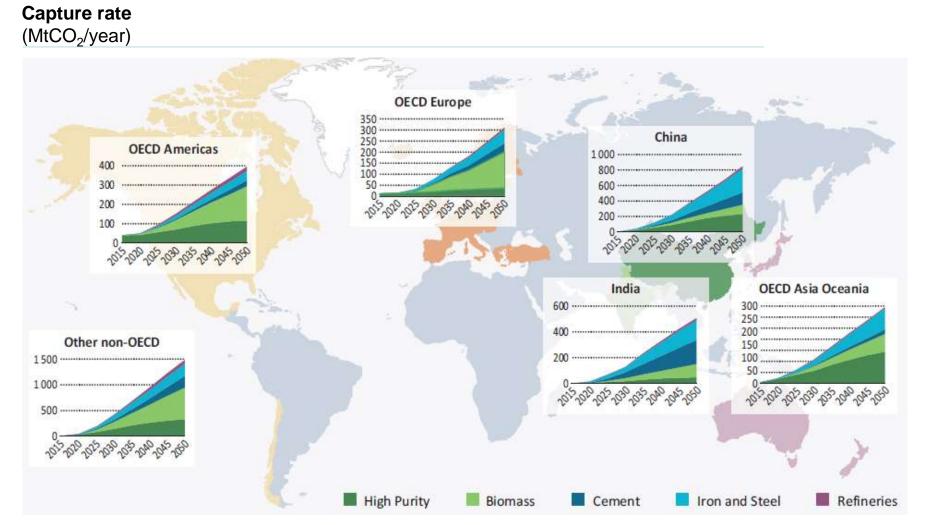
Figures of July 2014

Global

- There is ~25% scrap through the chain which can be reused (this is accounted through additional scrap availability in level 4 and not here)
- Downstream processes also reveal significant improvement potential; In the EU, through downstream improvements, total energy efficiency could be improved by 5% ⁽⁴⁾
- However, replacing all existing plants by BaT will enable a certain reduction
- Efficiency improvements are only applied on non-Hisarna BOF

Lever cost ⁽³⁾ €/t crude steel

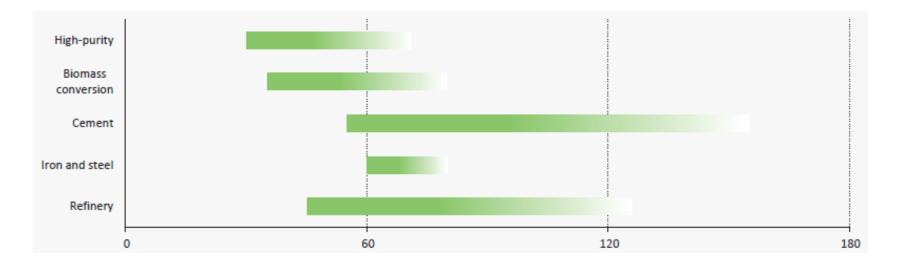
Input (fuel & material)	-x
Other opex	0
Capex (Assuming 5 years payback on energy savings)	127 +X


Energy efficiency : CHP potential Proposed lever ambitions

Level 1	Level 2	Level 3	Level 4
Minimum effort (following current regulation)	Moderate effort easily reached according to most experts	Significant effort requiring cultural change and/or important financial investments	Maximum effort to reach results close to technical and physical constraints
 No additional potential 	 No additional potential 	 No additional potential 	No additional potential
No potential remains after all energy efficiency measures have been implemented		·	•

Carbon Capture & Storage Projections from the IEA ETP 2012 by region

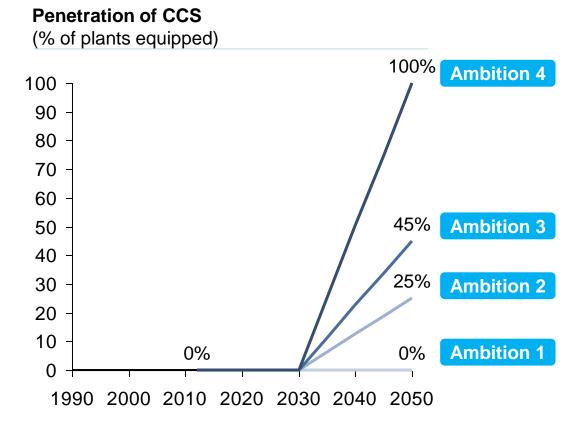
Global **C**alculator



3

Global **C**alculator

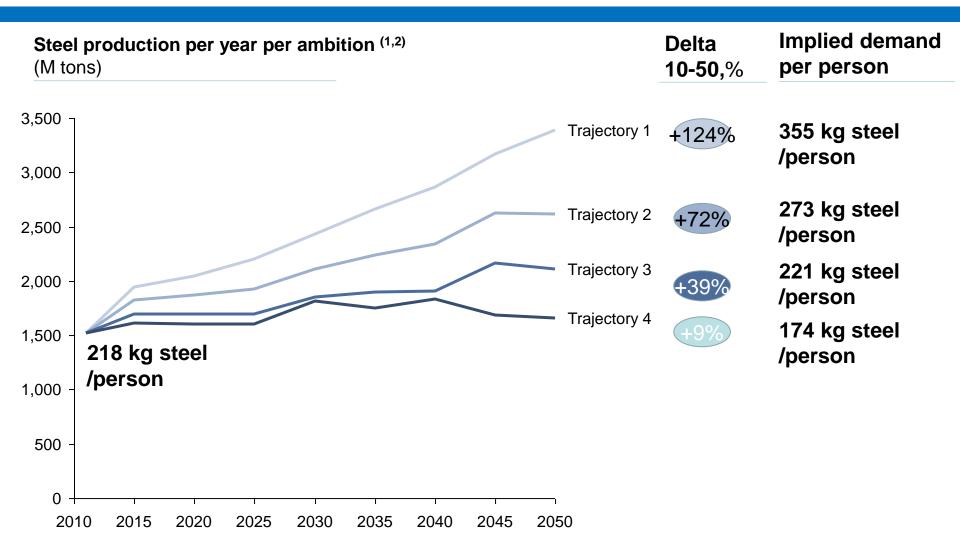
Typical ranges of costs of emission reductions from industrial applications of CCS (USD/tCO₂e avoided)


In addition, an electricity consumption of 0,33 TWh/MtCO₂e captured is modelled

NOTE: The range of costs shown here reflect the regional average costs of applying CCS in each sector, and, therefore, the overall cost of abatement in a sector will be affected by the assumed level of CCS uptake in each sector (IEA, 2009 and IEA and UNIDO 2011). These costs include the cost of capture, transport and storage, but do not assume that storage generates revenues (i.e. CO₂ storage through enhanced oil recovery (EOR) is not considered as a storage option.

SOURCE: ETP 2012, IEA

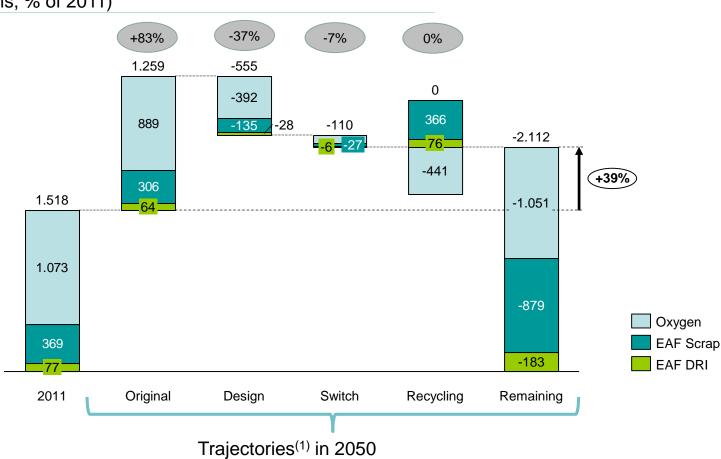
Carbon Capture & Storage 3 **Proposed lever ambitions**



- Several pilots available but industrial scale not rolled out before 2030
- Could be cheaper than top-gas recycling to reduce emissions ⁽²⁾
- Ambition 3 aligned to ETP 2012 ambition of 40-45% plants
- 80% capture rate ⁽¹⁾
- Only applied on oxygen steel & DRI in levels 1,2,3 & 4
- The specificities of CCS in the steel sector (e.g. energy consumption) should be refined in a later version of the model

	ever cost ⁽²⁾	
SOURCE: (1) Eurofer Steel Roadmap towards a low	Input (fuel & material)	0,33 TWh Elec/Mt captured
carbon economy 2050 (2013), on HIsarna and Ulcored technologies	Other opex	\$20 USD/ton captured
(2) (Carpenter, 2012, through ETP 2012).	Capex	\$40 USD/ton captured

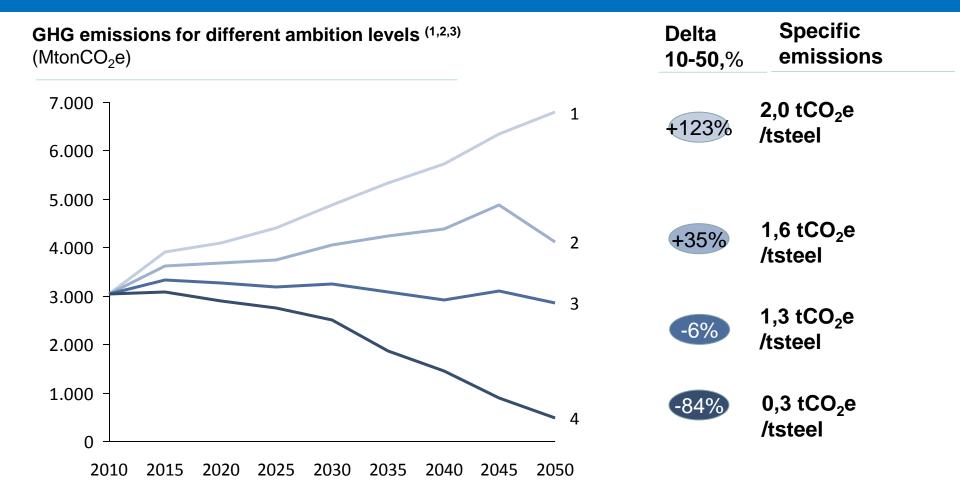
Model growth forecasts Production according to trajectories 1, 2 and 3 (after design, switch & recycling)



NOTE: (1) The population follows the average UN projection in all four trajectories (2) Other sectors are impacted by these transitions (e.g. additional productions are created in the aluminium and plastics sectors) SOURCE: IEA ETP 2012, Global calculator model

Reduction potential Details for ambition level 3⁽¹⁾

Figures of July 2014 Global Calculator

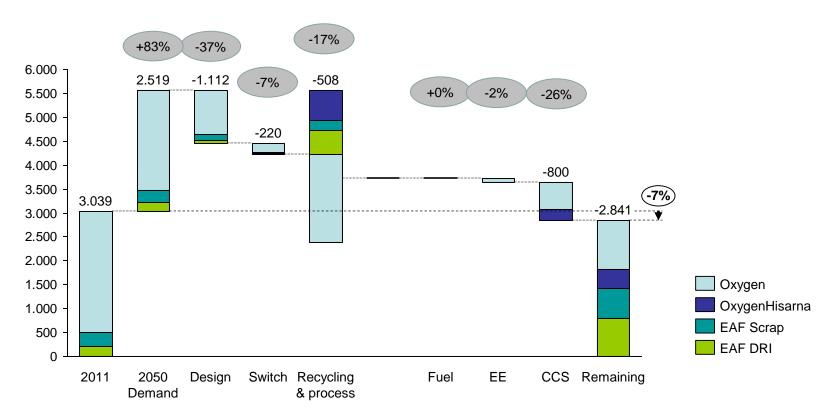

Steel production for ambition level 3 (M tons, % of 2011)

NOTE: (1) The population follows the average UN projection in all four trajectories (2)Assuming biomass emits, not including electricity related emissions SOURCE: IEA ETP 2012, Global calculator model

Reduction potential Emissions according to different trajectories

NOTE: (1) The population follows the average UN projection in all four trajectories

(2) Excluding biomass related reductions & electricity related emissions


(3) Other sectors are impacted by these transitions (e.g. additional emissions are created in the aluminium and plastics sectors)

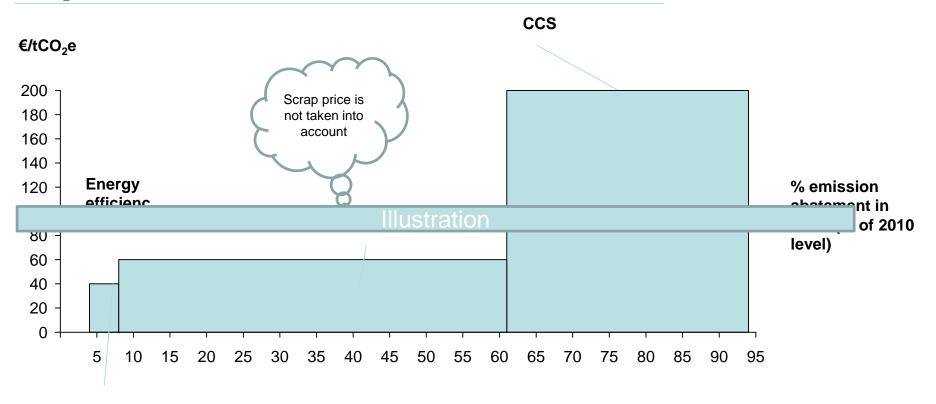
SOURCE: IEA ETP 2012, Global calculator model

Reduction potential Details for ambition level 3 ⁽¹⁾

Figures of July 2014 Global Calculator

Steel GHG emissions in 2050, for ambition level $3^{(1,2)}$, using different levers⁽³⁾ (MtCO₂e, % of 2010)

NOTES: (1) The population follows the average UN projection in all four trajectories


(2) Excluding biomass related reductions & electricity related emissions

(3) Other sectors are impacted by these transitions (e.g. additional emissions are created in the aluminium and plastics sectors) Percentage reductions are calculated vs the 2010 baseline

SOURCE: IEA ETP 2012, Global calculator model

Cost Marginal cost and abatement potential for different levers under trajectory 2 with ambition level 4 Illustration

GHG abatement curve for the year 2050 (trajectory 2, ambition 4) €/tCO₂e, % emission abatement in 2050 (% of 2010 level)

Hard steel

NOTE: Hypothesis of cost neutral energy efficiency measures , cost of biomass generic across all sectors SOURCE: Global calculator model

Agenda

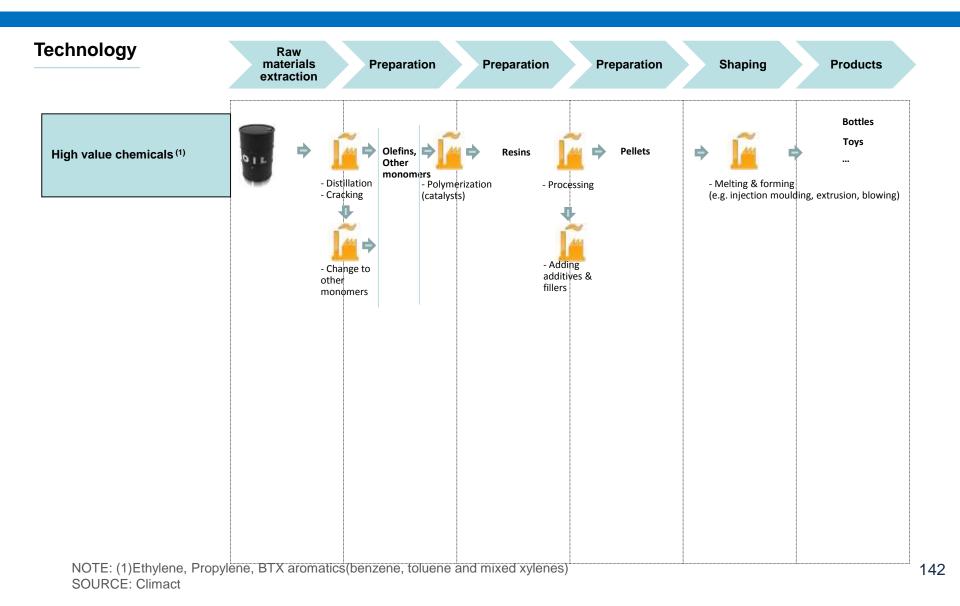
Global **C**alculator

2050 evolution of materials and emissions

Materials demand evolution

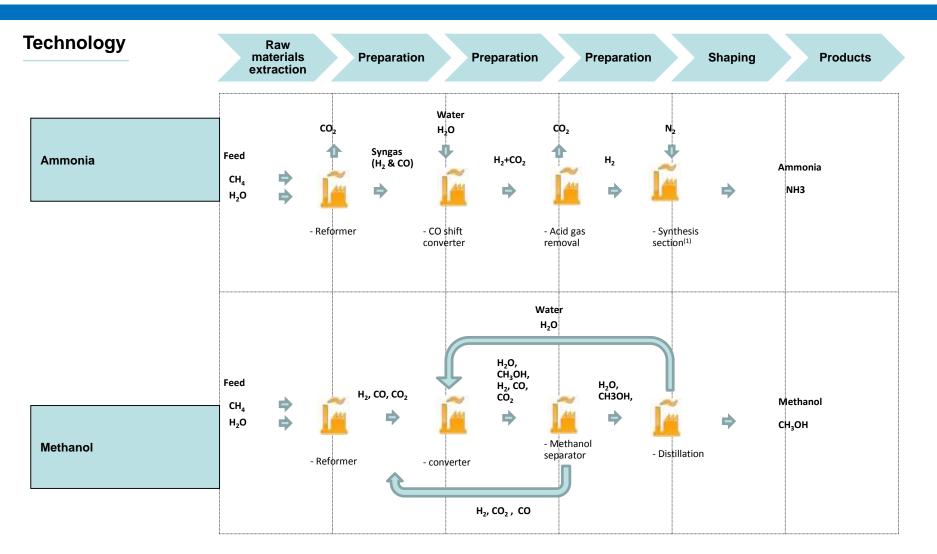
- Cross sector demand
- · Cross sector material switch
- Steel
- Chemicals
- Aluminium
- Cement
- Paper & Timber

Reduction potential on the manufacturing processes


- Resulting emissions
- Discussion on ambition levels across sectors
- Discussion on CCS
- Steel

Chemicals

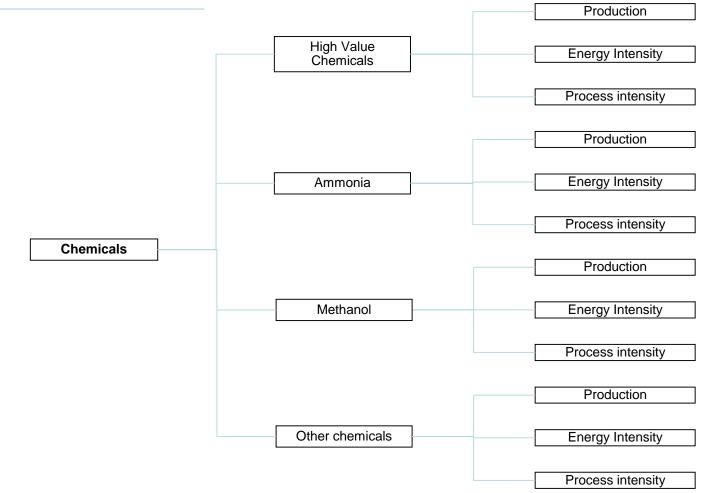
- Aluminium
- Cement
- Paper, Timber & Other


130 different industrial processes are used to manufacture the largest 18 volume chemicals, however 4 chemicals families are being assessed

Global **C**alculator

4 chemicals families are being assessed

Global **C**alculator



NOTE: Haber-Bosch process SOURCE: ICCA Catalytic roadmap

Chemicals emissions are being modelled

Global **C**alculator

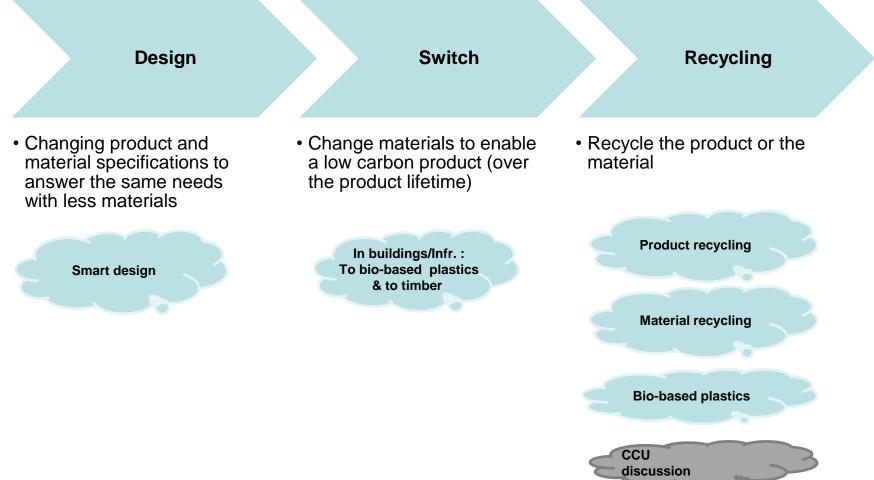
Chemicals emission tree

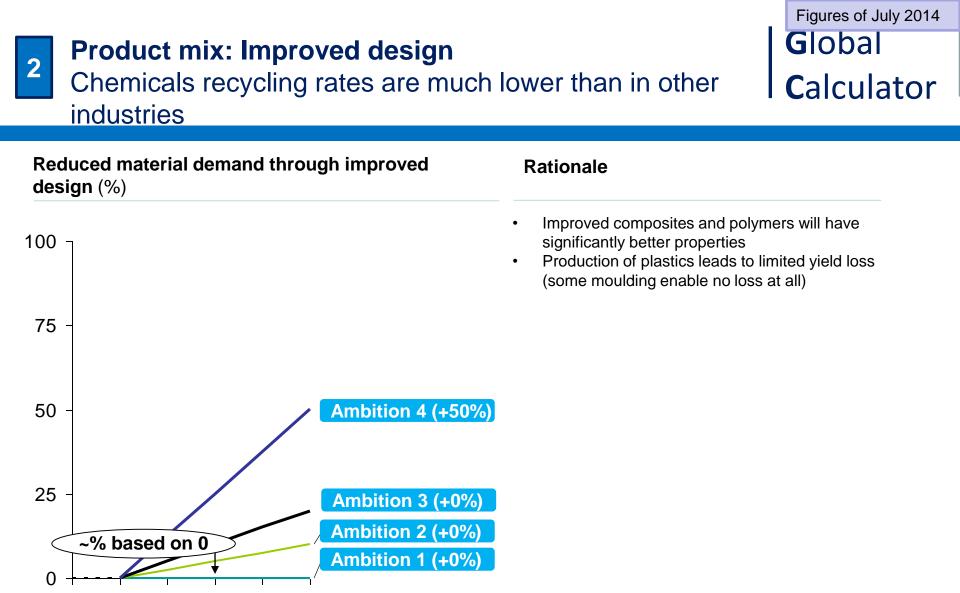
Global **C**alculator

146

Order and applicability of levers per chemical family

Lever	HVC	Ammonia	Methanol	Other
Material switch	\checkmark	\checkmark	\checkmark	\checkmark
Green plastics	\checkmark	/	/	/
Products recycling	✓	/	/	/
Materials recycling	✓	/	/	/
Improved design	✓	/	/	/
Process changes	 ✓ Catalytic naphta cracking 	 ✓ Hydrogen production 	 ✓ Hydrogen production 	/
Fuel switches	\checkmark	\checkmark	\checkmark	\checkmark
Energy efficiency	\checkmark	\checkmark	\checkmark	\checkmark
CCS	\checkmark	\checkmark	\checkmark	\checkmark

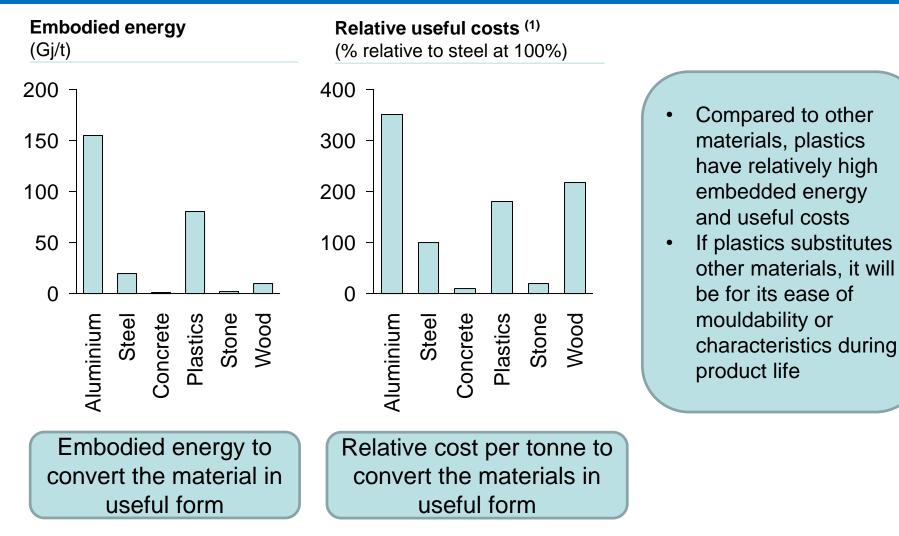

Material demand / product:


Design, Switch & Recycling levers are assessed

Global **C**alculator

147

List of actions & levers assessed


2000 2010 2020 2030 2040 2050

SOURCE: (1) With both eyes open

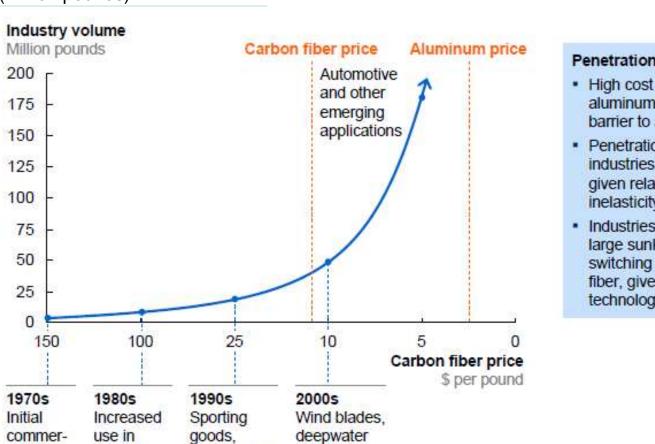
2

Product mix: Material switch Steel is a relatively cheap material

Global **C**alculator

NOTE : (1) Refer to "With both eyes open" for more details on the definition of useful costs SOURCE: (1) With both eyes open

Large scale adoption of carbon fibre is hindered by 2 high costs


Global **C**alculator

Carbon fibre market evolution

(Million pounds)

cialization

aerospace

drilling

Penetration barriers

- High cost relative to aluminum is main barrier to adoption
- Penetration in high-end industries will continue. given relative price inelasticity
- Industries also face large sunk cost upon switching to carbon fiber, given change of technology required

construction

applications

Chemicals

Chemicals can substitute other materials if they enable emissions during the whole product life cycle

In a later version of the calculator, include feedback from:

- Plastics Europe
- Car manufacturers

Materials which can replace /be replaced by chemicals

Characteristics

Chemicals replacement assumption

	Advantages	Weaknesses	HVC Ami	nonia M	ethanol	Other
Aluminium	Recyclability Lower cost & embodied energy	Density	Not modelled	Not modelled	Not modelled	Not modelled
Steel	Recyclability Lower cost & embodied energy	Density Corrosion	Substitutes steel in vehicles & buildings /infrastructure ⁽³⁾	Not modelled	Not modelled	Not modelled
Concrete	"Recyclability", Low cost & embodied energy, no corrosion	Weak in tension	Insulation materials substitutes cement in buildings/infrastructure	Not modelled	Not modelled	Not modelled
Stone & Masonry	Lower embodied emissions	Must be reinforced with mortar. Cannot be reinforced or moulded	Not modelled	Not modelled	Not modelled	Not modelled
Biomass (Timber /paper)	high strength and stiffness per density	Less durable, sensitive to fire and rot, less stable	Not modelled ⁽¹⁾	Not modelled (1)	Not modelled ⁽¹⁾	Not modelled ⁽¹⁾

NOTES: (1) Development of mega cities increases demand for noise and heat insulation products.

Performance will take a larger role (e.g. to gain space)

(2) Green chemistry is modelled in another lever

(3) 15% of plastics in cars today. With trend towards EV, there will be more emphasis on the need for light weight materials

Product mix : Material switch Proposed lever ambitions

(€/t chemicals)

Steel > Plastics

Concrete -> Plastics

153⁰

0

Level 1	Level 2	Level 3	Level 4
Minimum effort (following current regulation)	Moderate effort easily reached according to most experts	Significant effort requiring cultural change and/or important financial investments	Maximum effort to reach results close to technical and physical constraints
 Vehicles: 0% switch Buildings: 0% switch 	 Vehicles 5% steel → plastics Buildings/Infra: 5% cement → green plastics 	 Vehicles 10% steel → plastics Buildings/Infra: 10% cement → green plastics 	 Vehicles 20% steel → plastics Buildings/Infra: 20% cement → green plastics
•	m	1	•
			Lever cost

NOTE: (1) Amount of one material required to replace another material is approximated through the specific Young modulus
 (2) Assumption this material switch does not impact the product life

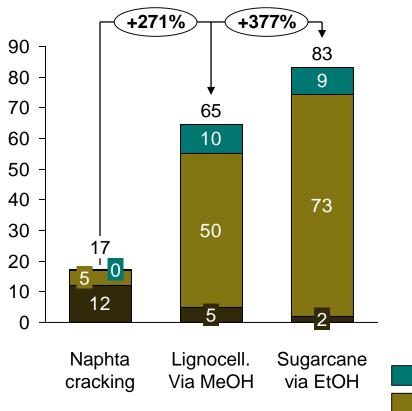
2

Product mix: Bio-based plastics (1/4) The "bio" can be in one of two dimensions

Global **C**alculator

Share of green plastics $(\%)^{(1)}$

	Plastic is Non bio- degradable	Plastic is Bio-degradable	
From renewable materials	Biopolymers e.g. BioPE (PP/PET), biosourced PA, PTT 	Biopolymerse.g. PLA, PHA,Amidons	Addressed by bio-based plastics lever
From fossil materials	 Conventionnal polymers Nearly all conventional plastics e.g. PE, PP, PET 	Biopolymerse.g. PBAT, PBS, PCL	
	Addressed by recycling lever	Not modelled; considered a small part of the total	


NOTES: Biomass availability is constrained, and enters in competition with biomass use for food, other products and energy. The Global calculator illustrates the impacts of using biomass

Source: (1) Fost+ environmental impact of biopackaging

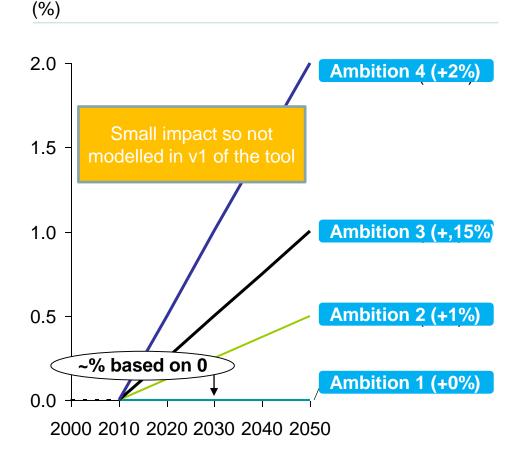
Product mix: Green plastics (2/4)GlobalUsing biomass feedstock can be significantly more energyCalculator

intensive than the established fossil-based routes

Energy use for biomass versus fossil routes to HVC (GJ/t HVC)

- The previous slides notes the competition for biomass.
 Likewise, there is competition for fossil fuels (between energy and product applications)
- This model does not look at the subsidies dimension, it is worth noting however that there are currently no subsidies planned for sequestring CO₂ in products (e.g. ETS only looks at emissions)

Primary feedstock production (oil, sugar cane, lignocellu
 Second feedstock production (naphta, MeOH, EtOH)
 HVC Production


2

2

Product mix: Green plastics (3/4) Only a small proportion of plastics can be made from biomass

Figures of July 2014 Global Calculator

Share of green plastics within HVC

Rationale on green plastics rates

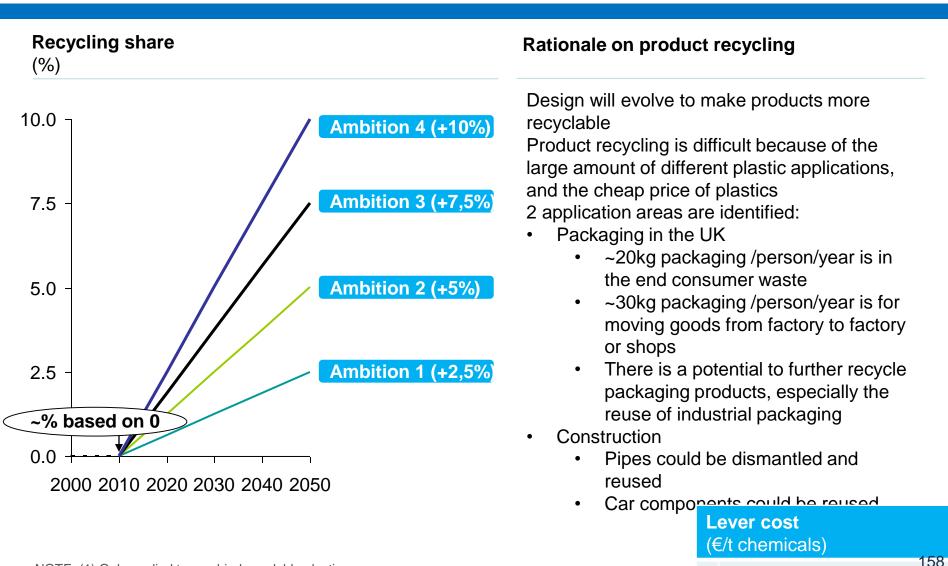
- Several monomers, such as the ethylene olefins, can be produced from plants (e.g. sugar cane)⁽²⁾
- More generally the feedstock can be made from biomass
- Bioplastics also tend to be more biodegradable than oil based plastics (but all 4 combinations are possible)
- Overall, the energy consumption of the relevant biomass routes is 3.5 to 5 times that of the fossil route ⁽²⁾. We assume it requires no more fossil energy
- Catalysis process changes (lever addressed later) facilitate the inclusion of biomass feedstock

Lever cost (€/t chemicals)

Specific consumption *4

NOTE: (2) The largest commercial activity currently takes place in Brazil, where the Brazilian petrochemical company Braskem operates the first industrial-scale sugarcane-based ethanol plant (200 kt/yr capacity) for subsequent polyethylene production.

Product mix: Green plastics (4/4) Caveat on modelling


Global **C**alculator

CCU was not modelled at significant scale in this version of the tool

- For higher rates of Carbon Capture & Usage (CCU), the development of a hydrogen supplychain was required
- Hydrogen supply chain has since been modelled in industry in the second version of the calculator

Figures of July 2014

In a future version of the model, consult Plastics europe to assess how much plastics is recycled today

Product mix: Products recycling

The chemicals product recycling lever is assessed

2

0 (also generates value)

Product mix: Materials recycling Chemicals recycling rates are much lower than in other

Global **C**alculator

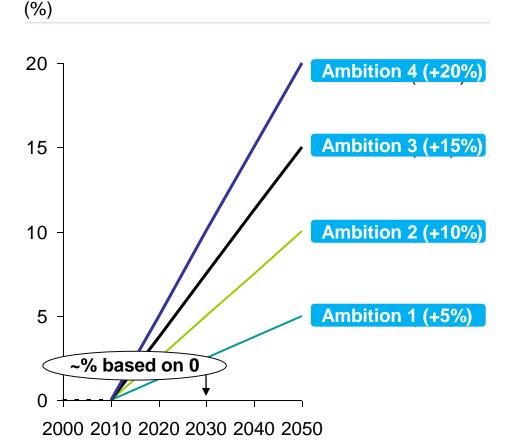
Rationale on plastics recycling rates

- Low plastics value and higher recycling complexity make plastic recycling less attractive
- Higher complexity comes from :

industries

- the higher variability of plastic manufacturing processes and additives (to change colours & properties) & fillers (cheaper materials which increase strength & hardness)
- The fact plastics are harder to isolate from other waste streams (e.g. it is weakly magnetic)
- Only thermoplastics can be recycled (not the thermosets) ⁽²⁾

Solutions


- Production scraps can easily be recycled (not much improvement potential is expected here)
- Improved separation of plastics waste streams from municipal waste (difficult because diverse)
- Improved sorting of plastics waste stream (difficult because similar density and optical properties)
- There are 4 levels of recycling :
 - Primary recycling: material is directly reextruded
 - Secondary recycling: plastics is ground in small chips, washed, dried & converted in resins (lower quality)
 - Tertiary recycling: plastics are broken down chemically to produce new feedstock (e.g. by pyrolysis)
 - Quaternary recycling: recovery of energy through incineration (this is addressed in the supply/waste analysis, not in manufacturing)

NOTE: (2) There are 2 families of plastics A) Thermoplastics which represent most of the plastics. These can be melted and reformed several times. B) Thermosets, which represent a smaller portion of the plastics. These change irreversibly on being heated, mixed, irradiated, and cannot be recycled (e.g. glass & carbon fibers) SOURCE: (1) With both eyes open

Recycling share

2

Simplifying assumption: applyied to all chemicals, even though ammonia fertilizers will not have recycling potential

> Lever cost (€/t chemicals) 0 (also generates value)

SOURCE: (1) With both eyes open

Carbon intensity of material production

The chemical sector has significantly improved historically **Calculator** but major improvements are still available

Historical improvements

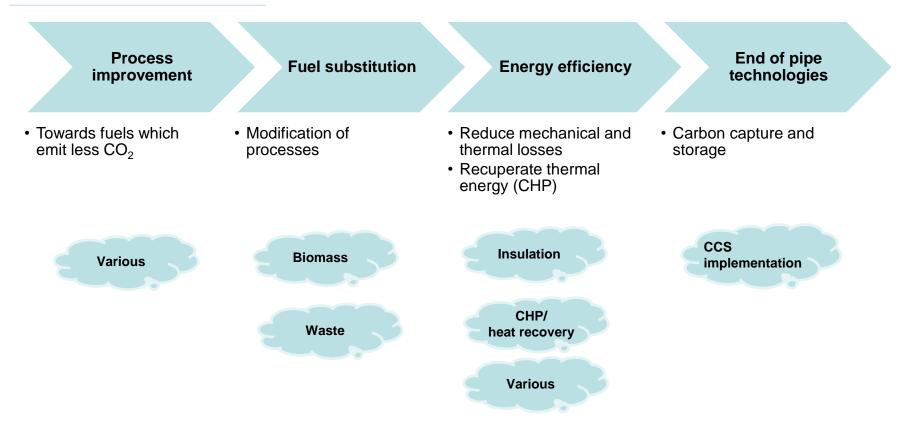
The sector has recently strongly improved it's energy efficiency

For example, in the US, energy intensity of the chemical sector improved by 39% and GHG emissions intensity was reduced by 10% between 1994 and 2007 ⁽¹⁾ Various levers are available:

Global

Better heat integration

Remaining improvement levers


- Catalyst tweaks
- State- of-the-art equipment
- Better catalysts
- Separations
- ...

3

Carbon intensity of material production

Process improvements, fuel mixes, energy efficiency & CCS are then assessed

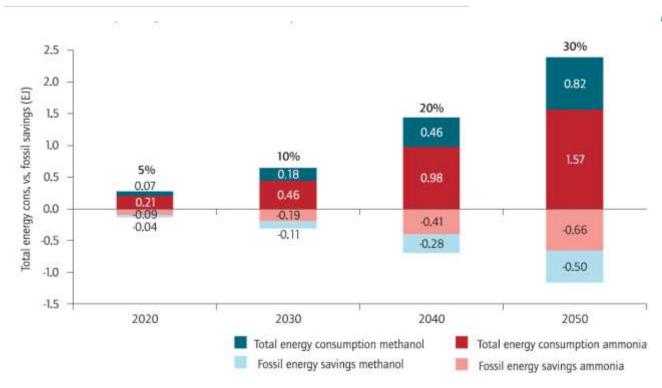
List of actions & levers assessed

Global

Calculator

Process improvements

Several process improvements could entirely change the energy consumption structure


Process improvement examples

High value chemicals	 Olefin production via catalytic cracking of naphtha and via methanol, moving away from steam cracking 	Could deliver energy savings of 10% to 20% $^{\rm (2)}$
	Olefin production via methanol	Not modelled, we simplify assuming all HVC switch to the catalytic process
	 Propylene Oxide (PO)production via the hydrogen peroxide propylene oxide (HPPO) process 	Could deliver energy savings of 10- 12% ^{(1),} but is not modelled cfr supra
Ammonia	 Hydrogen based production of ammonia 	+26 GJ/ t ammonia (NH3) Vector switch to 100% electricity
Methanol	 Hydrogen based production of methanol 	+15,7 GJ/ t methanol (NH3) Vector switch to 100% electricity
Other chemicals	 Improved hydrogen generation for steam methane reformers Synthesis of aromatics from lignin, ethanol or methane Direct synthesis of hydrogen peroxide from hydrogen and oxygen Direct epoxidation of propylene with oxygen 	

Process improvementsGlobalProduction of hydrogen from renewables currently uses aCalculatorlot of energyInterference

Additional energy demand versus fossil energy savings for replacement of current ammonia and methanol processes by hydrogen-based routes

(% implementation of hydrogen route)

 Ammonia synthesis based on hydrogen from renewable energy sources requires roughly 26 GJ/ t ammonia (NH3) more energy (and we assume a vector switch to electricity)
 For methanol (MeOH) from bydrogen and coal, an

hydrogen and coal, an additional 15.7 GJ/tMeOH are required compared to the gas steam reforming route and additional 5.6 GJ/tMeOH compared to the coal partial oxidation route

(and we assume a vector switch to electricity)

Process improvements

Production of hydrogen from renewables currently uses a **C**alculator lot of energy

Figures of July 2014

Global

Chosen ambition levers

	Process description	Level 1	Level 2	Level 3	Level 4	Modelling	
High value	 Olefin production via naphtha catalytic cracking 	0%	-5%	-10%	-20%	Reduction of specific consu	mption ⁽¹⁾
chemical s	Olefin production via methanol	/	/	/	/		
	 Propylene Oxide (PO)production via (HPPO) process 	/	/	/	/	Benefits related to the appli HPPO are included in the a reduction	
Ammoni	Hydrogen based production of	0%	0%	0%	30%	% switch to new technology	/
а	ammonia	Not n	nodelled	in v1 of t	he tool	+26 GJ/ t ammonia (NH3) Vector switch to 100% electricity	
Methanol	, , , , , , , , , , , , , , , , , , , ,		0%	0%	30%	% switch to new technology	
	methanol	Not modelled in v1 of the tool			he tool	+15,7 GJ/ t methanol (NH3) Vector switch to 100% electricity	
Other chemical s	 Improved hydrogen generation for steam methane reformers Synthesis of aromatics from lignin, ethanol or methane Direct synthesis of hydrogen peroxide from hydrogen and 	0%	-5%	-10%	-20%	Assuming same evolution as HVC	
	oxygenDirect epoxidation of propylene				Lever	ever cost ⁽¹⁾	
	with oxygen				Ir	nput (fuel & material)	Fuel costs
					С	ther opex	16
	NOTE: (1) this is not based on coal, that would increase emissions SOURCE: (1) DECHEMA, ICCA catalytic roadmap Capex					100	

Fuel switches

3

A significant portion of fuels (excl. feedstock) can be switched to biomass

Figures of July 2014 Global Calculator

Chosen ambition levers

	Switch description	Level 1	Level 2	Level 3	Level 4	Modelling
High	Solid & liquid to gaseous	0%	10%	20%	30%	Same specific consumption
value chemicals	 Solid & gaseous hydrocarbons to biomass ⁽²⁾ 	0%	5%	10%	20%	Specific consumption of biomass 5% higher
Ammonia	 Solid hydrocarbons to biomass ⁽²⁾ 	0%	5%	10%	20%	Specific consumption of biomass 5% higher
Methanol	 Solid hydrocarbons to biomass ⁽²⁾ 	0%	5%	10%	20%	Specific consumption of biomass 5% higher
Other chemicals	 Solid hydrocarbons to biomass ⁽²⁾ 	0%	5%	10%	20%	Specific consumption of biomass 5% higher

Le	ver cost ⁽¹⁾	
	Input (fuel & material)	Fuel costs
	Other opex	167
	Capex	0

NOTE: (2) Not related to feedstock (addressed in green plastics lever) SOURCE: (1) Climact 3

CHP Up to 20% of the sector electricity can be covered by Combined heat and power units

Figures of July 2014 Global Calculator

Chosen ambition levers

	Level description	Level 1	Level 2	Level 3	Level 4	Modelling
High value chemica Is	 % of the electricity consumption covered by the CHP 	5%	10%	15%	20%	 In this 1st version of the tool, it is approximated by x kwh of electricity which can be replaced by x kwh of gas
Ammoni a	 % of the electricity consumption covered by the CHP 	5%	10%	15%	20%	 This covers the autoproducers This does not cover the large CHP units which are classified as Electricity producers
Methan ol	 % of the electricity consumption covered by the CHP 	5%	10%	15%	20%	
Other chemica Is	 % of the electricity consumption covered by the CHP 	5%	10%	15%	20%	

Lever cost ⁽¹⁾			
Input (fuel & material)	Fuel costs		
Other opex	168		
Capex	0		

NOTE: (2) Not related to feedstock (addressed in green plastics lever) SOURCE: (1) Climact high level assumption levers

Energy efficiency Additional energy efficiency is possible after the previous

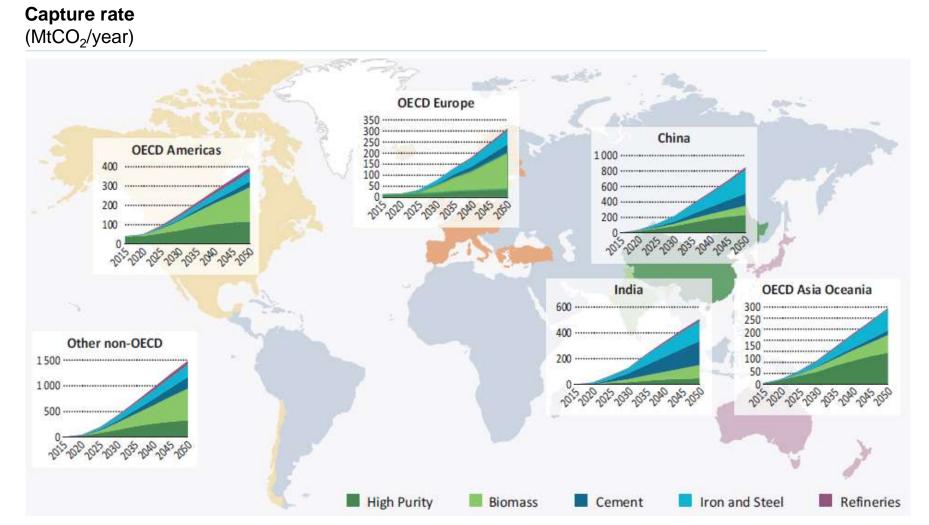
Global Calculator

Energy efficiency rationale (in addition to the technology modifications addressed earlier)

High value chemicals	 Could deliver energy savings ~20% in addition to the process change ⁽²⁾
Ammonia	 Applied on the part not switching to hydrogen based production Stochiometric : 19,8 GJ/t NH₃ BAT 2050 : 24 GJ/t NH₃ ⁽³⁾ Standard technology 39 GJ/t NH₃ - new BAT technology 28 GJ /t NH₃(- 30%)⁽¹⁾ Retrofit options for improvements of reformer section and CO₂ removal section Potential for low pressure (improved catalysts) and improved process control
Methanol	 Applied on the part not switching to hydrogen based production Assumption same as ammonia
Other chemicals	 Assumption same as HVC

NOTE: Not related to feedstock (addressed in green plastics lever) SOURCE: (1) Source : SERPEC study (2)ICCA Catalytic roadmap

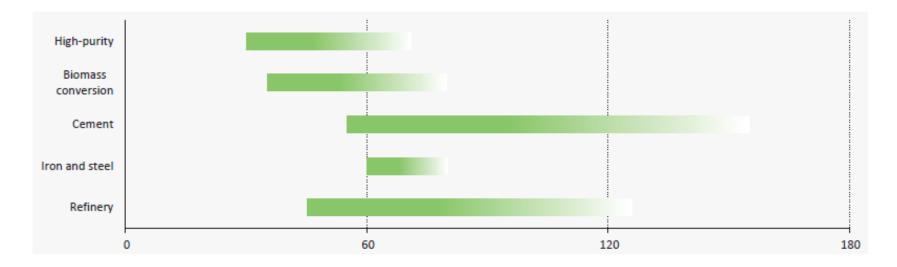
Energy efficiency improvements


3

	Description	Level 1	Level 2	Level 3	Level 4	Modelling
High value chemic als	Newer plants &retrofits	0%	-5%	-10%	-20%	Specific consumption reduction
Ammo nia	Newer plants & retrofits	0%	-7,5%	-15%	-30%	Specific consumption reduction
Methan ol	Newer plants &retrofits	0%	-7,5%	-15%	-30%	Specific consumption reduction
Other chemic als	Newer plants &retrofits	0%	-5%	-10%	-20%	Specific consumption reduction

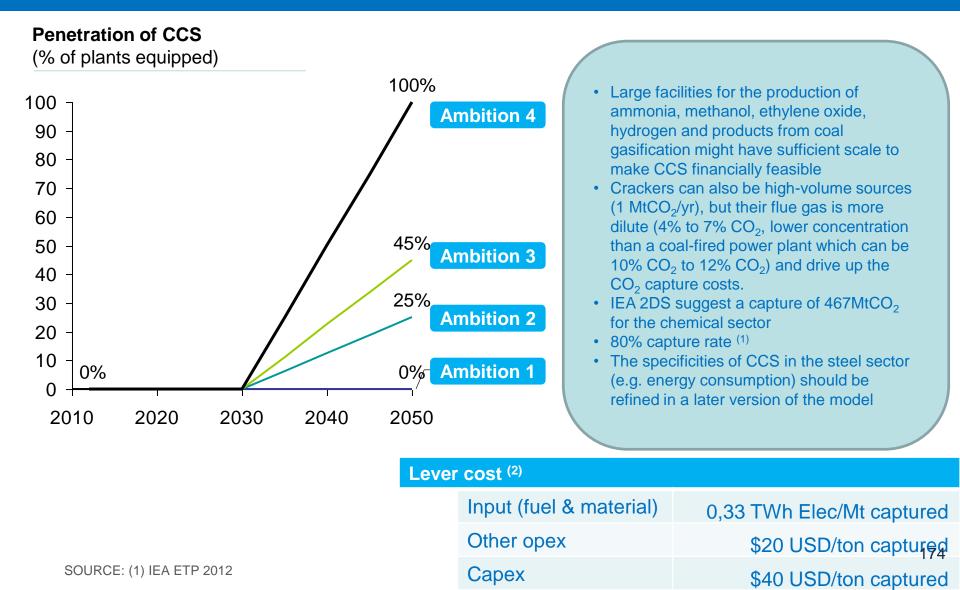
Lev	ver cost ⁽²⁾	
	Input (fuel & material)	-x
	Other opex	178
	Capex	+X

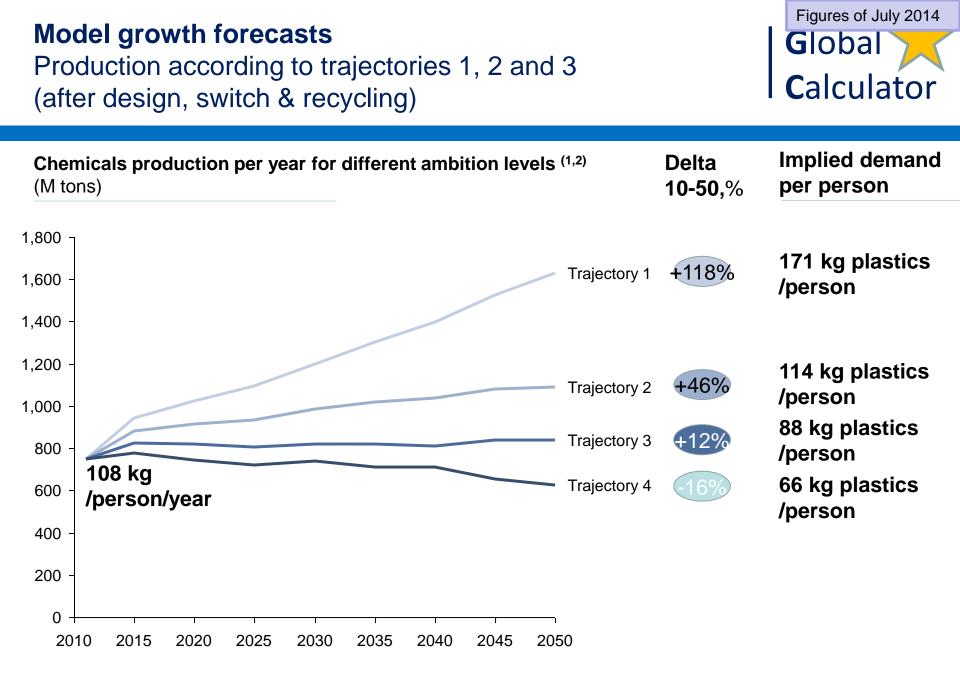
Carbon Capture & StorageProjections by region


Global **C**alculator

Global **C**alculator

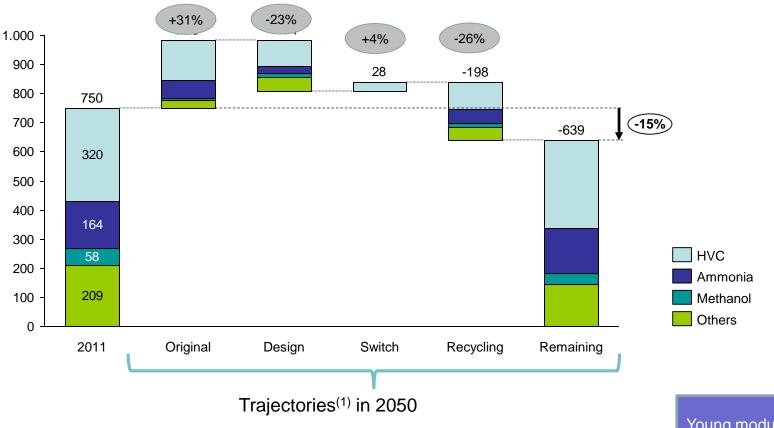
Typical ranges of costs of emission reductions from industrial applications of CCS (USD/tCO $_2$ e avoided)


In addition, an electricity consumption of 0,33 TWh/MtCO₂e captured is modelled


NOTE: The range of costs shown here reflect the regional average costs of applying CCS in each sector, and, therefore, the overall cost of abatement in a sector will be affected by the assumed level of CCS uptake in each sector (IEA, 2009 and IEA and UNIDO 2011). These costs include the cost of capture, transport and storage, but do not assume that storage generates revenues (i.e. CO₂ storage through enhanced oil recovery (EOR) is not considered as a storage option.

SOURCE: ETP 2012, IEA

Carbon Capture & Storage 3 **Proposed lever ambitions**

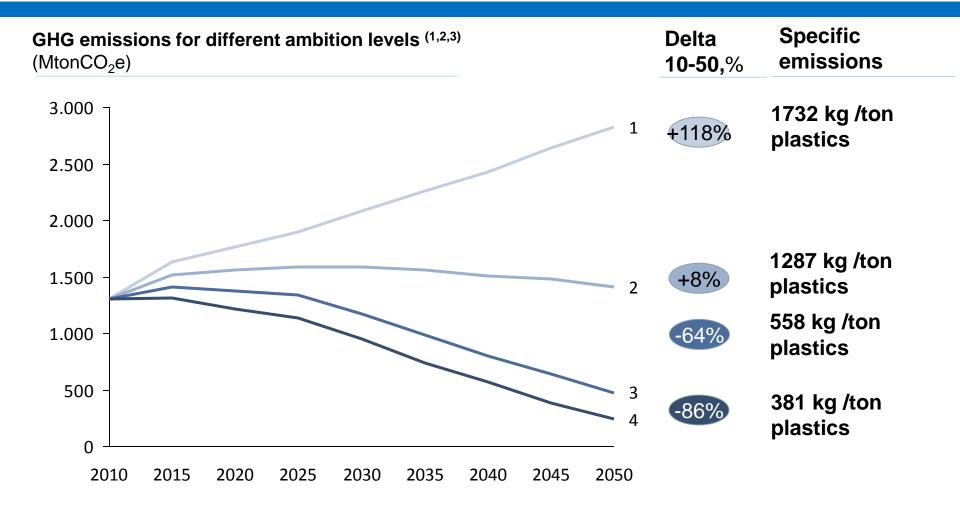


NOTES: (1) The population follows the average UN projection in all four trajectories
 (2) Other sectors are impacted by these transitions (e.g. additional productions are created in the timber sector)
 SOURCE: IEA ETP 2012, Global calculator model

Reduction potential Details for ambition level 3

Figures of July 2014 Global Calculator

Chemicals production for ambition level 3 (M tons, % of 2011)



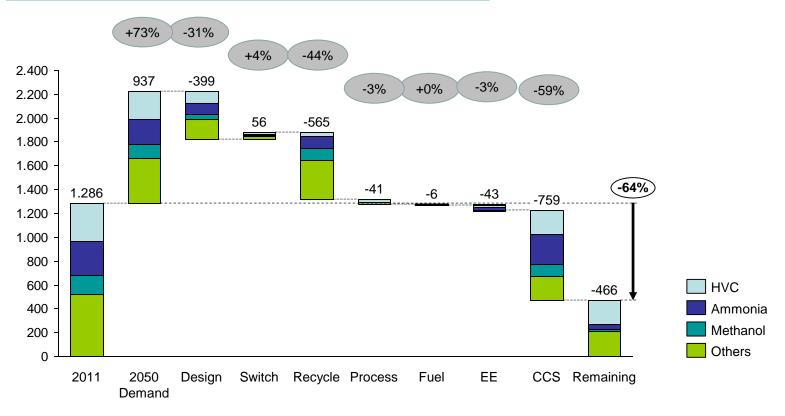
NOTE: (1) The population follows the average UN projection in all four trajectories (2)Assuming biomass emits, not including electricity related emissions SOURCE: IEA ETP 2012, Global calculator model

Young modulus applied to chemicals is very high leading to low material increase

Reduction potential Emissions according to different trajectories

NOTES: (1) The population follows the average UN projection in all four trajectories

(2) Excluding biomass related reductions & electricity related emissions


(3) Other sectors are impacted by these transitions (e.g. with product switch)

SOURCE: IEA ETP 2012, Global calculator model

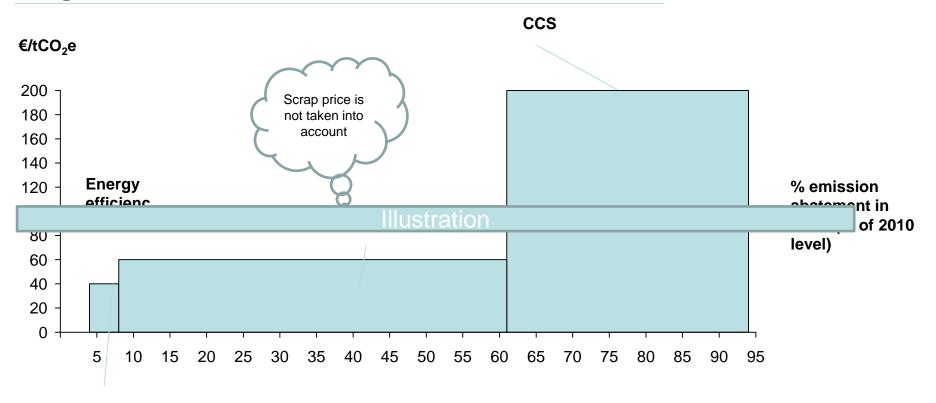
Reduction potential Details for ambition level 3 ⁽¹⁾

Figures of July 2014 Global Calculator

Chemicals GHG emissions in 2050, for ambition level $3^{(1,2)}$, using different levers⁽³⁾ (MtCO₂e, % of 2010)

NOTES: (1) The population follows the average UN projection in all four trajectories

(2) Excluding biomass related reductions & electricity related emissions


(3) Other sectors are impacted by these transitions (e.g. additional emissions are created in the aluminium and plastics sectors)

Percentage reductions are calculated vs the 2010 baseline SOURCE: IEA ETP 2012, Global calculator model

Cost Marginal cost and abatement potential for different levers under trajectory 2 with ambition level 4

maonation

GHG abatement curve for the year 2050 (trajectory 2, ambition 4) €/tCO₂e, % emission abatement in 2050 (% of 2010 level)

NOTE: Hypothesis of cost neutral energy efficiency measures , cost of biomass generic across all sectors SOURCE: IEA ETP 2012, Global calculator model

Agenda

Global **C**alculator

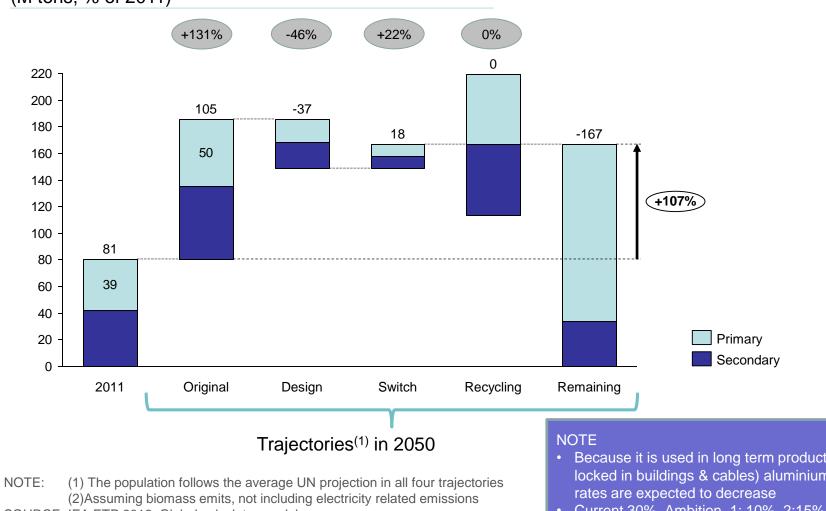
2050 evolution of materials and emissions

Materials demand evolution

- Cross sector demand
- · Cross sector material switch
- Steel
- Chemicals
- Aluminium
- Cement
- Paper & Timber

Reduction potential on the manufacturing processes

- Resulting emissions
- Discussion on ambition levels across sectors
- Discussion on CCS
- Steel
- Chemicals
- Aluminium
- Cement
- Paper, Timber & Other


Lever	Ambitions					
	1	2	3	4		
Design	0%	-10%	-20%	-30%		
Switch to Aluminium from steel	0%	0,5%	1%	2%		
Switch to plastics from aluminium (planes)	not modeled	not modeled	not modeled	not modeled		
Recycling(% of total)	+10%	+15%	+20%	+25%		
Process improvements (as EE)	0%	-5%	-10%	-20%		
Fuel switches (coal to biomass in primary alu	0%	2%	3%	5%		
СНР	0%	0%	0%	0%		
Energy efficiency (additional)	0%	-3%	-5%	-10%		
CCS(emissions captured)	0%	43%	64%	85%		

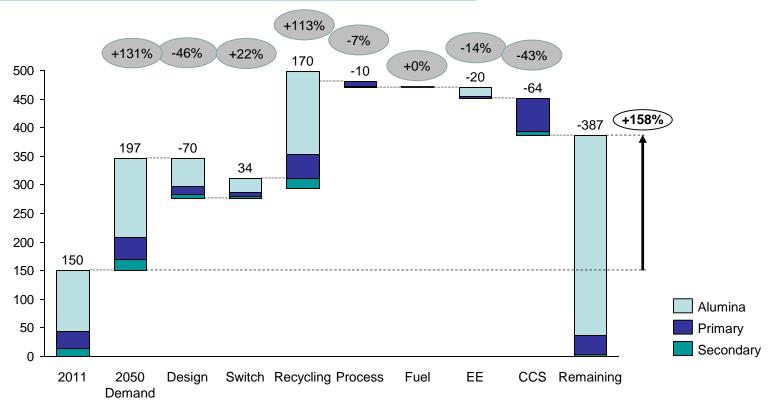
NOTE: Because it is used in long term products (alumium locked in buildings & cables) aluminium scrap availability is expected to decrease, limiting the recycling potential SOURCE: Global Calculator consultations, WorldAluminium

Reduction potential Details for ambition level 3

Figures of July 2014 Global **C**alculator

Aluminium production for ambition level 3 (M tons, % of 2011)

SOURCE: IEA ETP 2012, Global calculator model


· Because it is used in long term products (aluminium locked in buildings & cables) aluminium recyclability 201

• Current 30%, Ambition 1: 10%, 2:15% 3: 20%, 4:25%

Reduction potential Details for ambition level 3 ⁽¹⁾

Figures of July 2014 Global Calculator

Aluminium GHG emissions in 2050, for ambition level $3^{(1,2)}$, using different levers⁽³⁾ (MtCO₂e, % of 2010)

NOTES: (1) The population follows the average UN projection in all four trajectories

(2) Excluding biomass related reductions & electricity related emissions

(3) Other sectors are impacted by these transitions (e.g. additional emissions are created in the aluminium and plastics sectors)

Percentage reductions are calculated vs the 2010 baseline SOURCE: IEA ETP 2012, Global calculator model

Agenda

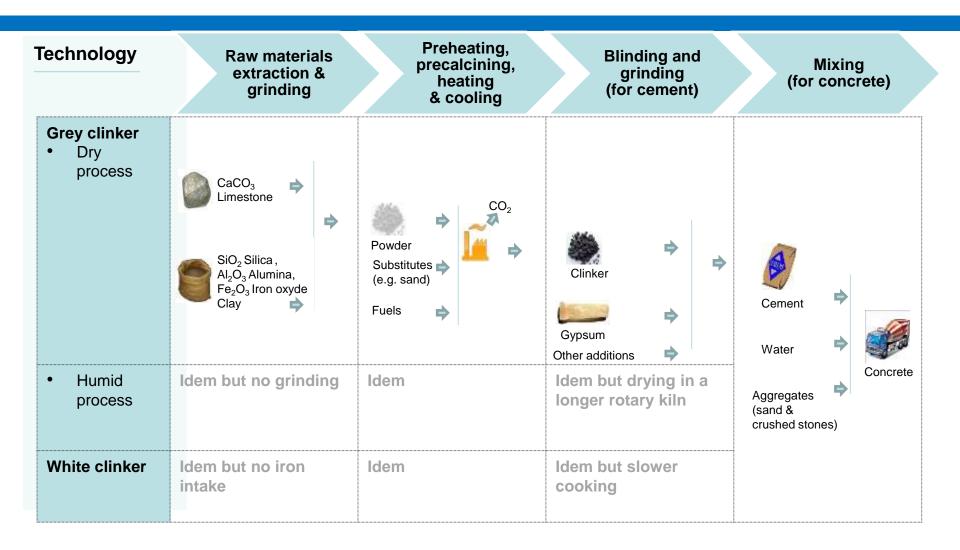
Global **C**alculator

2050 evolution of materials and emissions

Materials demand evolution

- Cross sector demand
- · Cross sector material switch
- Steel
- Chemicals
- Aluminium
- Cement
- Paper & Timber

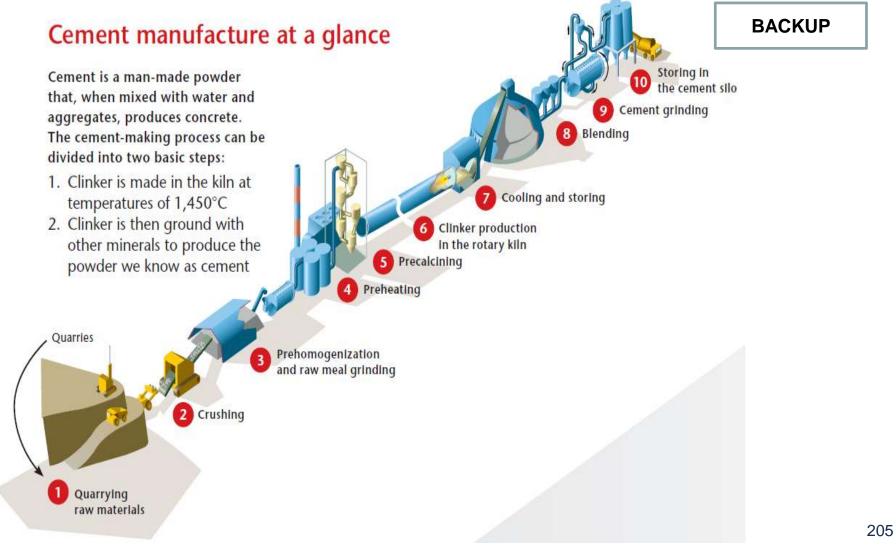
Reduction potential on the manufacturing processes


- Resulting emissions
- Discussion on ambition levels across sectors
- Discussion on CCS
- Steel
- Chemicals
- Aluminium

• Cement

• Paper, Timber & Other

Manufacturing chain definition for each technology


Global **C**alculator

NOTE: The cement typically represents 10-15% of the concrete mix, is then used with water and aggregates (sand & crushed stones) SOURCE: Climact analysis

Classical illustration of the cement manufacturing chain

Global **C**alculator



SOURCE: (0) IEA 2011 (1) CBR & Holcim 2011 interviews

(2) 2010 Belgian GHG inventory (3) USGS, (4) Climact analysis (5) Febelcem

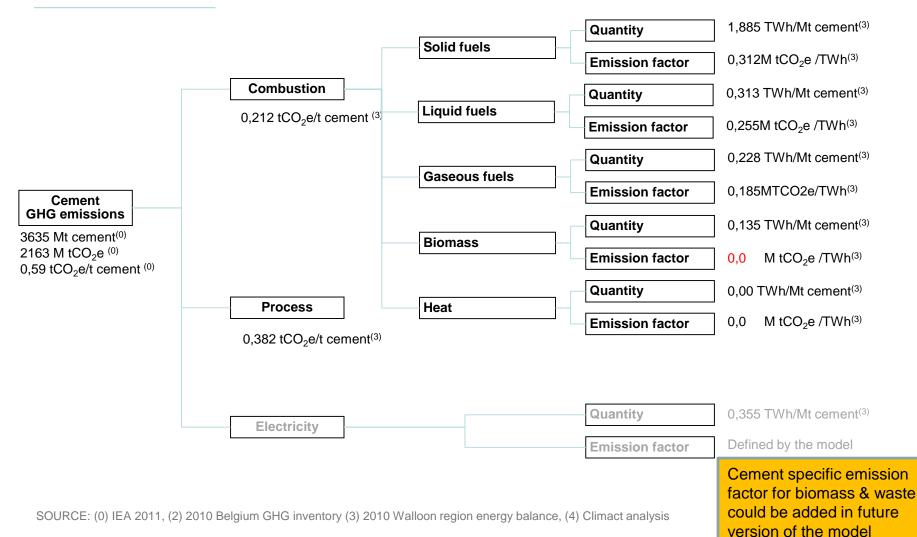
Detailed emission tree

(not modelled, but used to assess the impact of the reduction **Calcula** levers)

Assumptions for consumption and emissions are specified

Model assumptions (2011) ^(1, 2)

Technology		Total
Production (Mt)		3635
Specific	Electricity	0,35
Consumption (PJ/MT= GJ/t	Solid HC	1,88
Cement)	Liquid HC	0,31
,	Gaseous HC	0,23
	Biomass & Waste	0,14
	Heat	-
	Total	2,92
Specific emissions	Combustion CO ₂ e	0,21
(tCO2/t cement)	Process CO ₂	0,38
	Process CH ₄	0,03
	Process N ₂ O	0,03
	Total CO ₂	0,59
	Total CH ₄	0,03
	Total N ₂ O	0,03
	Total CO ₂ e	

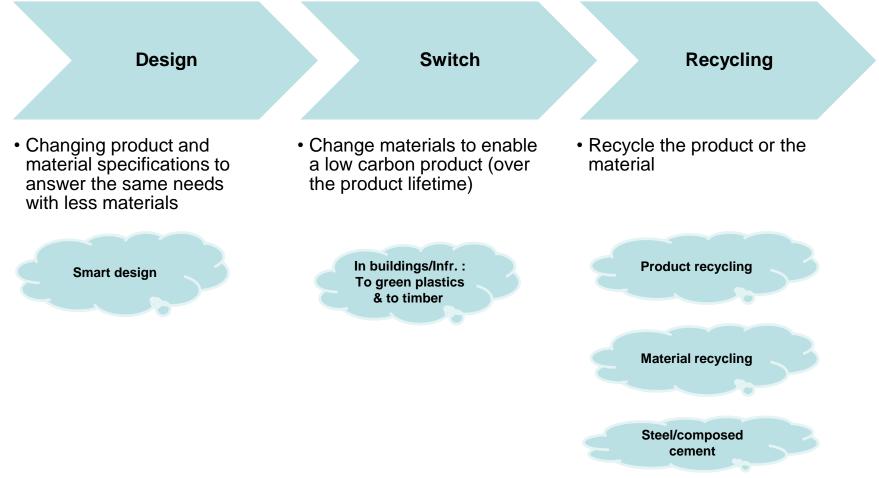

NOTE: scope covers steel & alloys making (but not the use phase nor the materials extraction phase

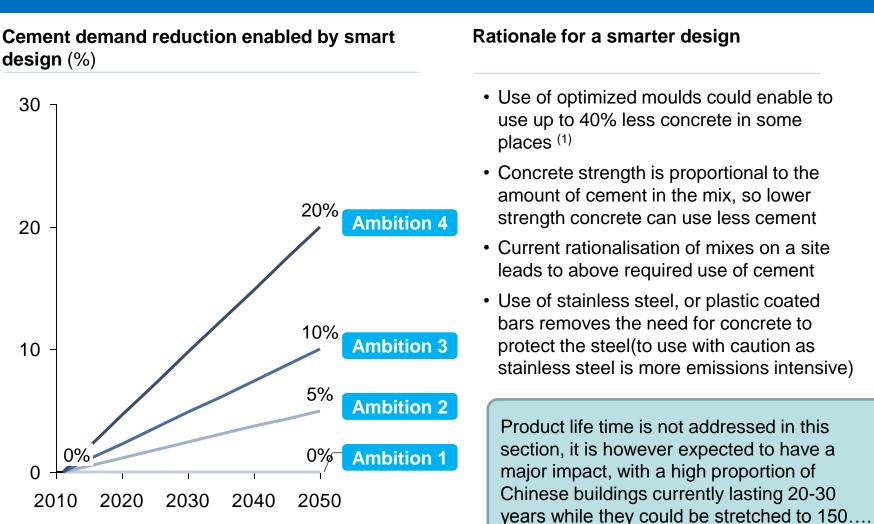
Emission tree (modelled)

Figures of July 2014 Global Calculator

208

Model Emission tree 2011




Material demand / product:

Design, Switch & Recycling levers are assessed

Global **C**alculator

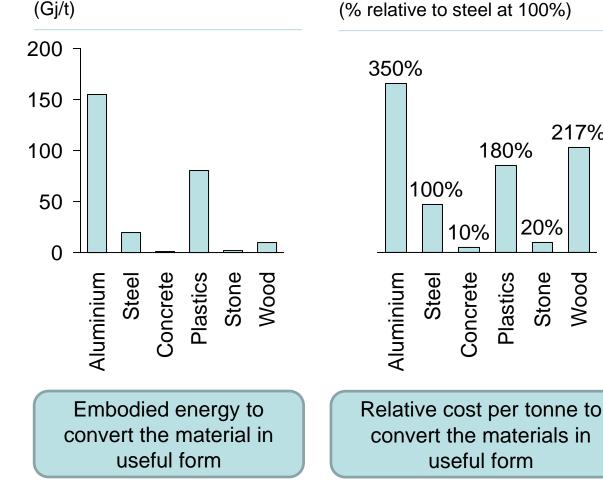
List of actions & levers assessed

Smart design Better specified cement can fulfil the same requirements with lower volumes

SOURCE: With both eyes open

2

(1) With both eyes open (Orr et Al. (2010), research of efficient concrete shapes


NOTE : (1) Refer to "With both eyes open" for more details on the definition of useful costs SOURCE: (1) With both eyes open

Cement is one of the cheapest option to build durable constructions

Embodied energy

2

Relative useful costs (1) (% relative to steel at 100%)

217%

Wood

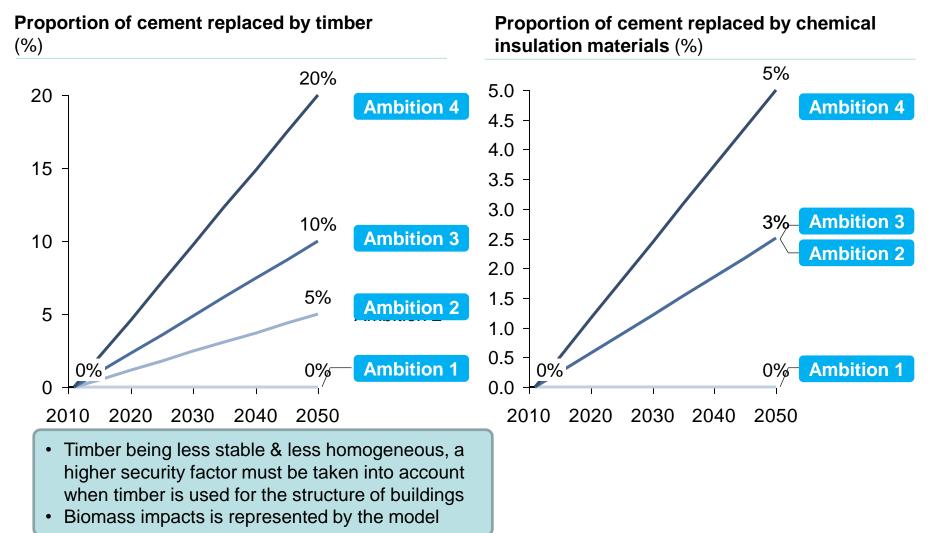
- Concrete has a relatively low embodied energy and cost required to convert it in useful form
- Cement substitutes all have advantages and drawbacks

Material switch Cement can be substituted by less CO₂ intensive materials

Materials which can replace /be replaced by concrete

Characteristics

Cement replacement assumption


	Advantages	Weaknesses	Buildings	Infrastructure
Aluminium	Strength Recyclability	Higher cost & embodied energy	Not modelled	Not modelled
Steel	Strength Recyclability Compatibility (rebar)	Higher cost & embodied energy Requires protection against corrosion	Not modelled ⁽²⁾	Not modelled ⁽²⁾
Plastics (Composite materials, glass/ carbon fibres reinforced epoxies)	Strength	No recyclability Higher embodied energy	Up to 5% concrete can be replaced by insulation materials (HVC)	Up to 5% concrete can be replaced by insulation materials (HVC)
Stone & Masonry	Strength lower embodied emissions	Must be reinforced with mortar (from cement) Cannot be reinforced or moulded into shapes	Not modelled	Not modelled
Timber	high strength and stiffness per density (1)	Less durable, requires protection against fire and rot, less stable	Up to 20% concrete can be replaced by timber	Not modelled

NOTE : (2) Historically, two product mixes are used in constructions. The "Continental approach" uses more concrete, while the "British approach" uses more steel.

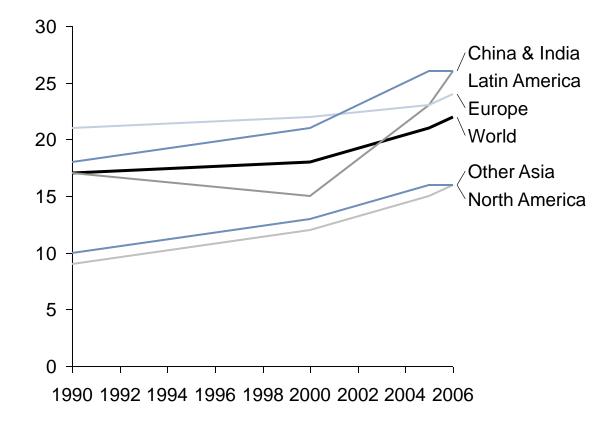
SOURCE: (1) With both eyes open (Orr et Al. (2010), research of efficient concrete shapes

NOTE: (1) Amount of one material required to replace another material is approximated through the specific Young modulus (2) Assumption this material switch does not impact the product life

Material recycling: Aggregate

2

Cement is not recycled, but reused as a an aggregate


Proportion of cement recycled (%)	Rationale on recycling potential
100 7	 Reversing the reaction that makes cement requires theoretically at least 1GJ/t, so cement is currently not "recycled" at present
75 -	 Creating block components reusable at the end of life is an option (with 2 technical options)
	 Chemical connectors⁽¹⁾
50 -	 Mechanical connections, to provide a "Lego" interface ⁽²⁾
25 - Ambit Ambit	ion 3aggregate which can be used to make concrete if mixed with new cement.ion 2However extra cement is required to bind
0% Ambit 0 2010 2020 2030 2040 2050	the wider range of particle sizes in crushed concrete. This is then typically used for roads and infrastructures. This is not really recycling and is therefore addressed in the composed cement lever

NOTE: (1) Being researched in Japan, cfr Noguchi et al. (2011) (2) This is typically expected with composite steel and cement blocks with a steel to steel interface SOURCE: With Both Eyes Open 2

Process improvements: Composed cement Composed cement market share has increased historically...

Global **C**alculator

World and regional cement substitutes evolution (% of the cement production)

- Mineral components can be added to the clinker to obtain de cement (flying ashes, blast furnace slag, others), if those are superior to 5%, we get composed cement. Steel cement is a type of composed cement
- Substitute share has increased globally and across all regions. China & India recently increased very firmly

2

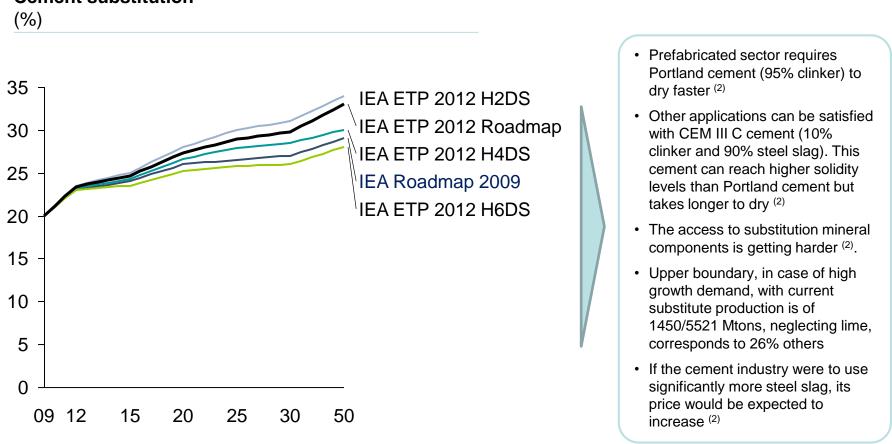
Process improvements: Composed cement

There is a resource limit to the amount of clinker that can be substituted

Types of clinker substitution	Impact on the cement characteristics	Availability	
Ground Granulated Blast Furnace Slag (GGBS)	Adds long term strength and durability (but lower initial strength and slower curing)	250 Mt/year	
Pulverised Fly Ash (PFA)	Improves concrete workability and long term strength (but lower initial strength)	900 Mt/year	
Pozzolan	Improves durability and workability (but lower initial strength)	300 Mt/year	
Limestone	Improves workability but reduces strength and durability	Widely available	
Crushed concrete	Does require slightly more cement	3500 Mt/year	

Crushed concrete Does require slightly more cement

Annual supplies of GGBS, PFA & Pozzolan currently total 1450 Mt And Limestone substitution has also downsides and is only used in level 4 Including crushed cements enables close to 5000 Mt


NOTE: Mineral components can be added to the clinker to obtain de cement (flying ashes, blast furnace slag, others), if those are superior to 5%, we get composed cement. Steel cement is a type of composed cement SOURCE: With Both Eyes Open, IEA Cement roadmap, Carbon war room (WBCSD 2009, Holcim 2009)

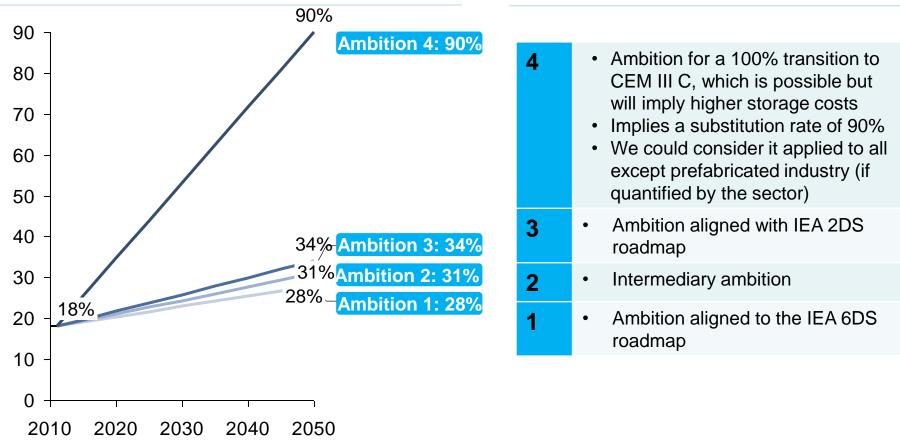
Global

Calculator

Process improvements: Composed cement IEA scenarios forecast a substitution rate between 28-34% Calculator

Cement substitution

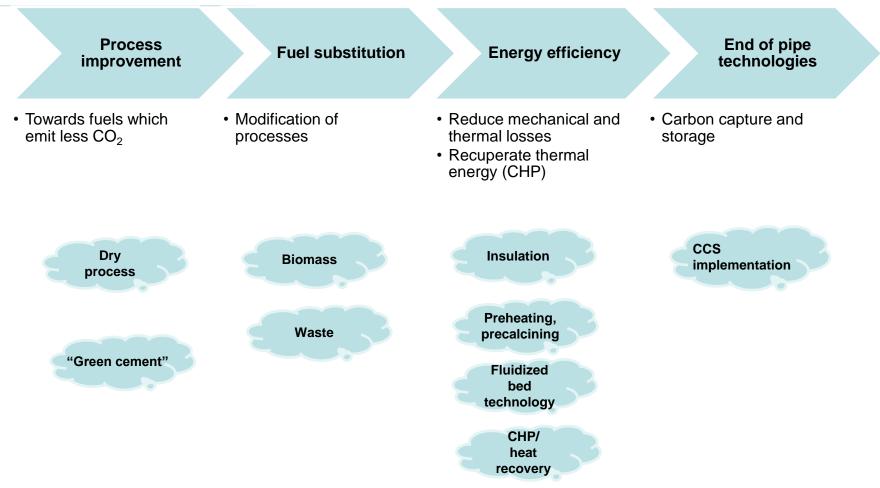
NOTES: Major hypothesis: no emissions are allocated to the steel slag, considering it as a waste from the steel sector Substitution potential is not applicable to white cement Intermediary figures are a Climact assumption for 2,4 & 6 DS


SOURCE: (1) IEA ETP 2012 and IEA 2009 Cement Roadmap (2) Fortea CBR and Holcim consultations, Febelcem annual report

Process improvements: Composed cement Proposed lever ambitions

Rationale for the different ambitions

Proportion of substitutes in the cement composition (%)



3

Carbon intensity of material production

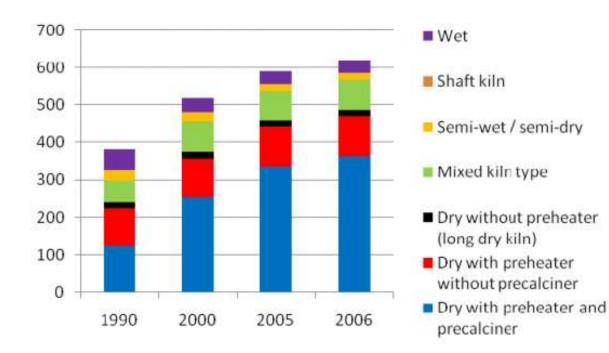
Process improvements, fuel mixes, energy efficiency & CCS are then assessed

List of actions & levers assessed

NOTE: Process choice has consequences on applicability of other levers Some combinations are exclusive whilst others can be added in sequential order SOURCE: (1) (redundant with Ulcored while we represent HIsarna in this analysis

Global

Calculator


Process improvements

The share of BAT clinker production is increasing (along the dry technology, with preheater and precalciner)

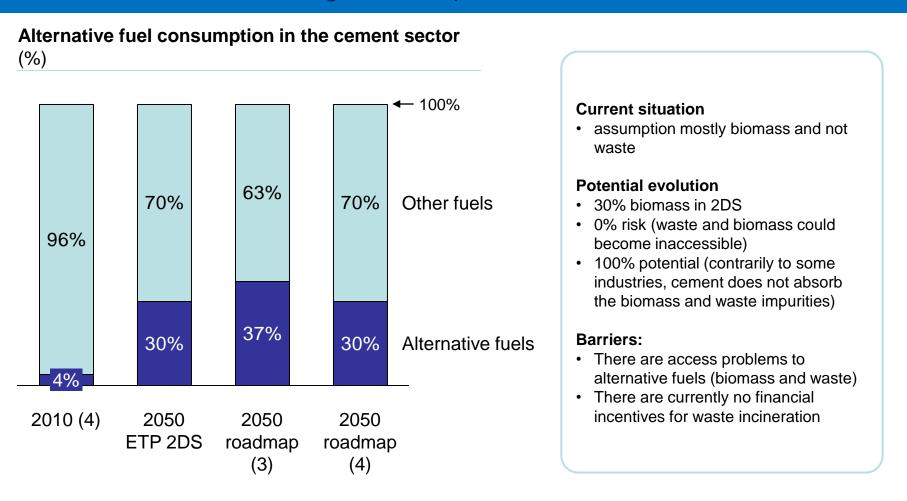
Clinker production per technology

3

 The choice of using a dry or humid choice is linked to the exploited quarry type

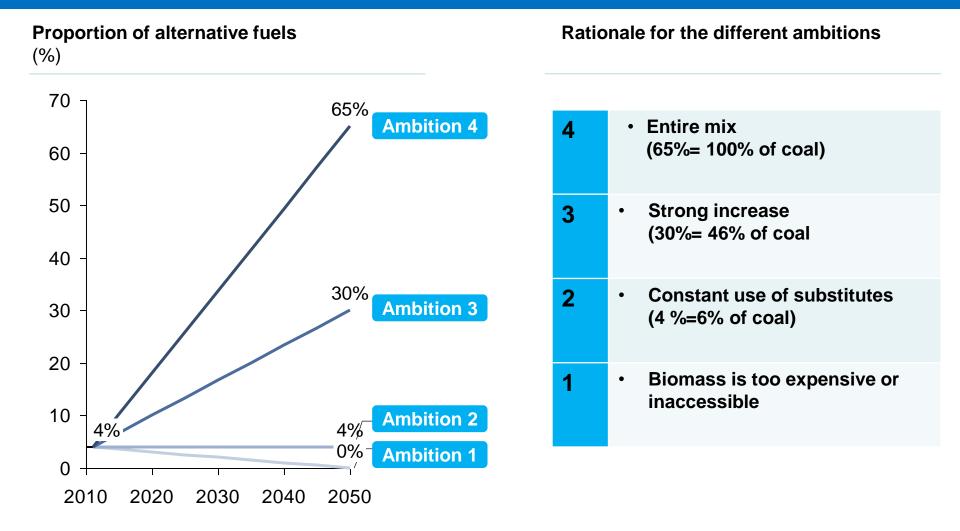
Global

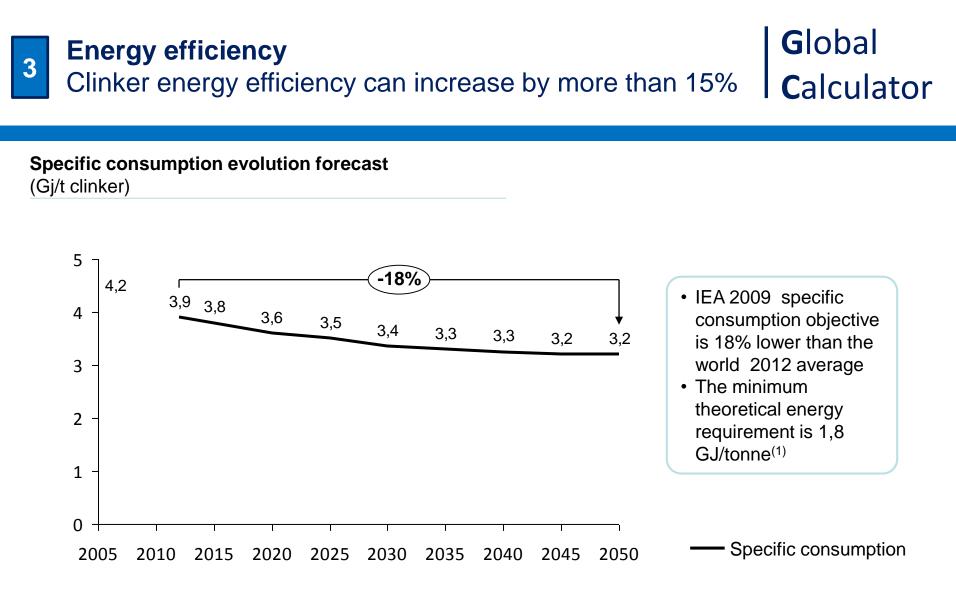
Calculator

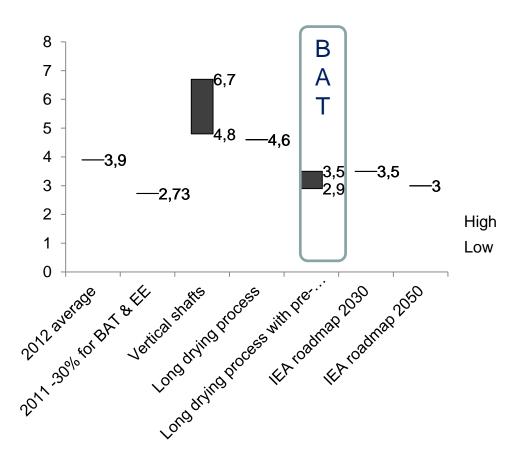

- We assume this improvement is included in the IEA specific consumption projections (in energy efficiency improvements)
- « green concrete », a new low carbon process (using magnesium oxyde instead of calcium), enables to obtain cement through a less CO₂ intensive process. It is currently not modelled ⁽¹⁾

NOTE : (1) Green concrete not considered mature technologically; the entity commercializing it does not exist any more. Furthermore, there is a lack of available data on the technology SOURCE: GNR participants to the CSI

Alternative fuels


3


The alternative fuels proportion has strongly increased and reaches one the highest European levels **G**lobal **C**alculator


NOTES: Energy efficiency improvements are expected to be lower in white cement The later only represents 2% of the production SOURCE: IEA 2009 technology roadmap

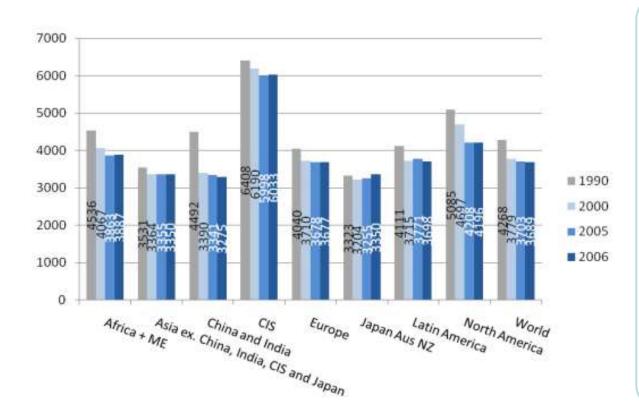
(1) With both eyes open (p.64 'Cement chemistry', Taylor, H., 1990)

Global **C**alculator

Current Specific consumption (Gj/t clinker)

Several factors support the specific consumption reduction:

- The rising proportion of dry process with pre-heaters and pre-calciners
- The energy price increase

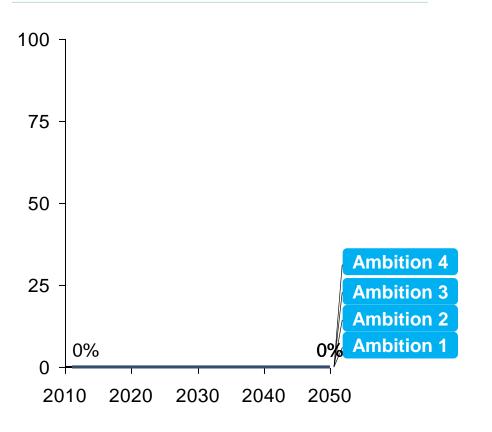

If all plants used BAT, the average world specific consumption could be reduced by 1,1 Gj/ton cement

Energy efficiency There are significant regional differences

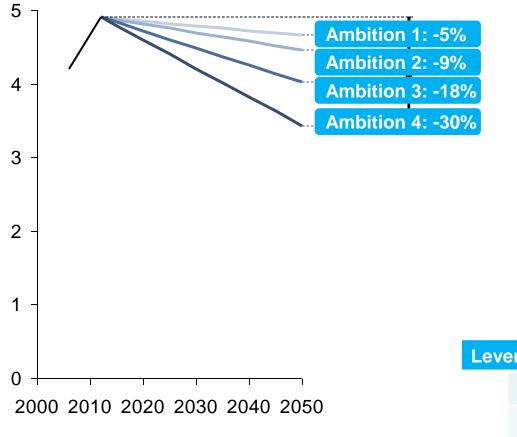
Global **C**alculator

Specific consumption evolution (Mj/t clinker)⁽¹⁾

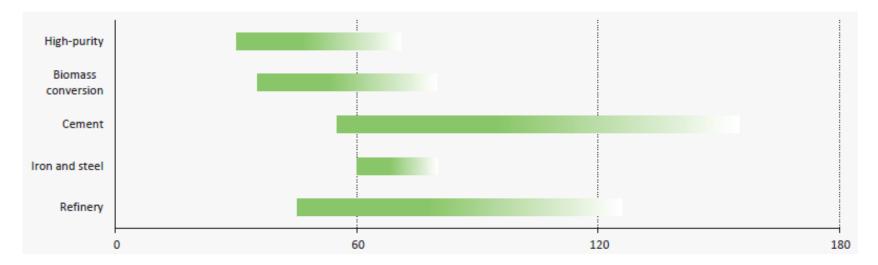
3


- Two thirds of the people making cement are in china, while china only produces 40% of the worlds cement, this is because they are in small factories using older technologies ⁽²⁾
- India is also know for currently having old factories⁽²⁾
- Old factories often use the wet process ⁽²⁾
- There is more improvement potential in developed countries (as developing countries have recently invested in new technologies) ⁽³⁾

Feedback appear contradictory; recommendations?


Percentage of electricity production through CHPs (%)

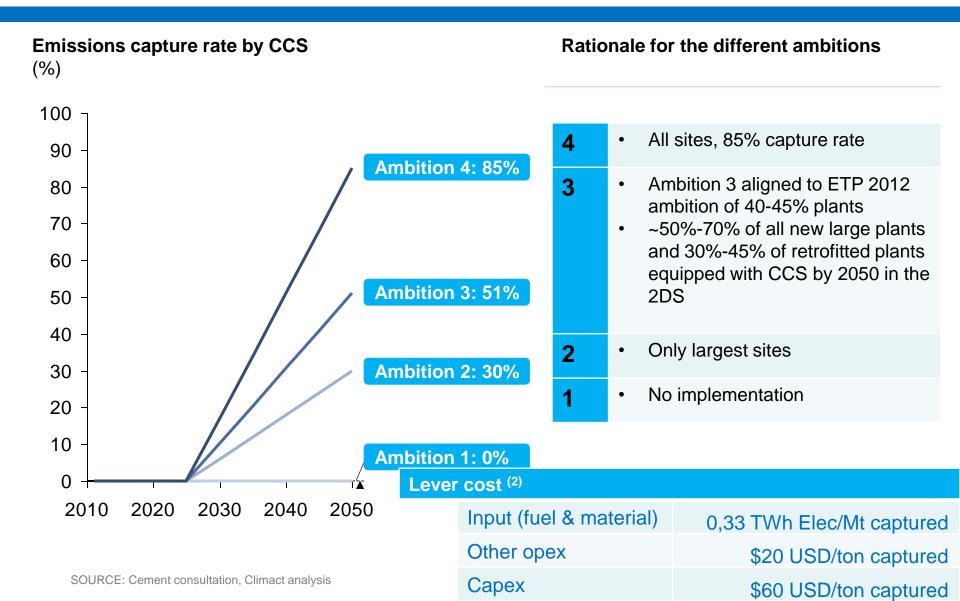
Specific consumption improvements (Gj/ton clinker, % reduction vs 2010)



Lever cost ⁽³⁾ €/t crude steel		
	Input (fuel & material)	-x
	Other opex	0
	Capex (Assuming 5 years payback on energy savings)	229

Global **C**alculator

Typical ranges of costs of emission reductions from industrial applications of CCS (USD/tCO₂e avoided)

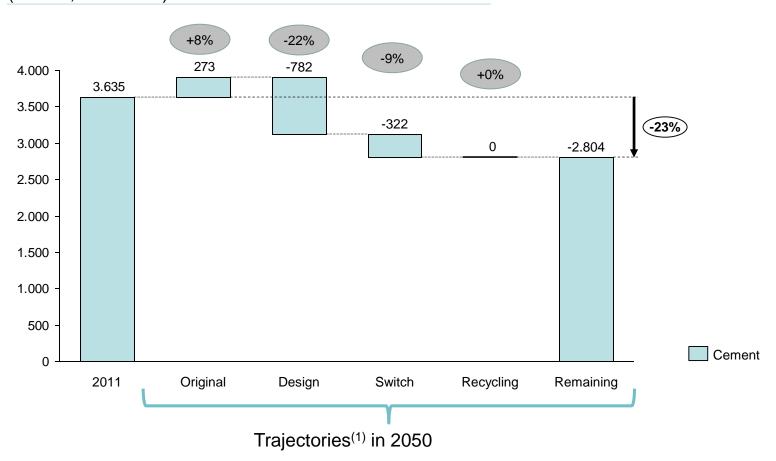


- ~50%-70% of all new large plants and 30%-45% of retrofitted plants equipped with CCS by 2050 in the 2DS
- Deploy 120 to 140 kilns with CCS by 2030, 300 to 400 by 2040 and 500 to 700 by 2050
- Capture costs of USD 100 € (2030) and USD 75 € (2050) for PC and USD 50 € (2030) and USD 40 € (2050) for oxyfuels.

NOTE: The range of costs shown here reflect the regional average costs of applying CCS in each sector, and, therefore, the overall cost of abatement in a sector will be affected by the assumed level of CCS uptake in each sector (IEA, 2009 and IEA and UNIDO 2011). These costs include the cost of capture, transport and storage, but do not assume that storage generates revenues (i.e. CO₂ storage through enhanced oil recovery (EOR) is not considered as a storage option. SOURCE: ETP 2012, IEA

Reduction potential

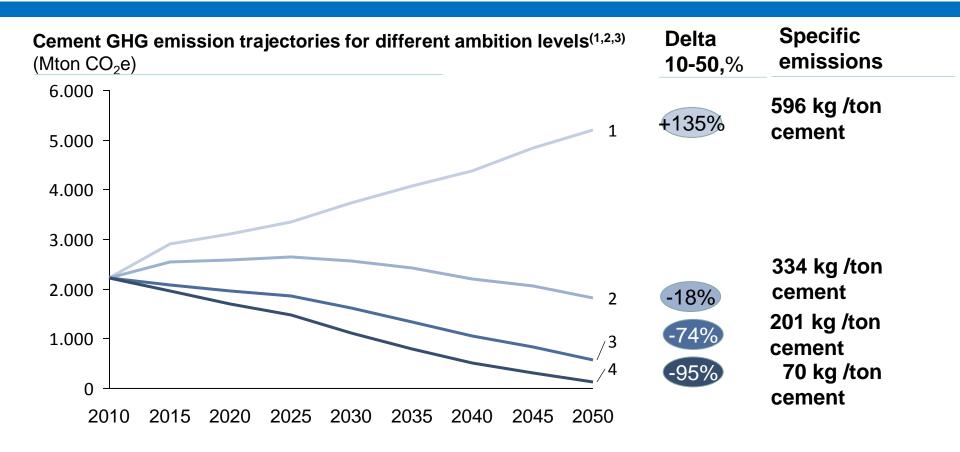
Final Materials demand according to different trajectories (after design, switch & recycle)


Figures of July 2014 Global Calculator

Implied demand **Cement Production Trajectories for different ambition** Delta levels (simulating a constant clinker rate)^(1,2) 10-50.% per person (Mton cement) 912 kg 9.000 +140% /person/year 8.000 7.000 565 kg 6.000 +49% 2 /person/year 5.000 4.000 3.000 522 kg 328 kg -14% /person/year /person/year 2.000 -49% 1.000 194 kg 0 /person/year 2010 2015 2020 2025 2030 2035 2040 2045 2050

NOTE: (1) The population follows the average UN projection in all four trajectories (2) Other sectors are impacted by these transitions (e.g. additional productions are created in the timber sector) SOURCE: IEA ETP 2012, Global calculator model

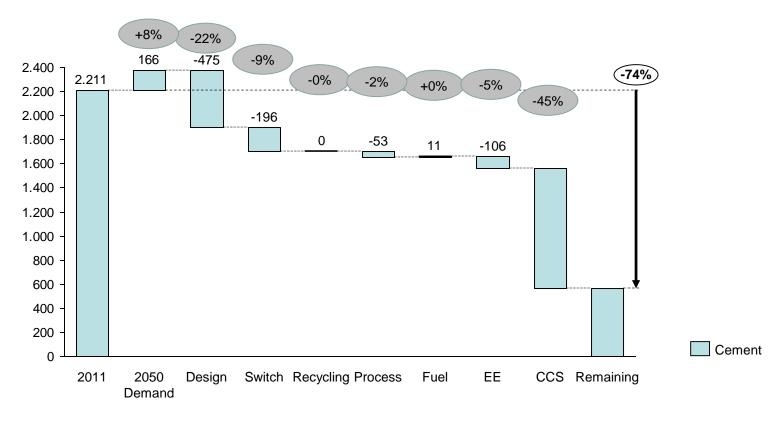
Figures of July 2014 Global Calculator


Cement production for ambition level 3 (M tons, % of 2011)

NOTE: (1) The population follows the average UN projection in all four trajectories (2)Assuming biomass emits, not including electricity related emissions SOURCE: IEA ETP 2012, Global calculator model

Reduction potential Emissions according to different trajectories

Figures of July 2014 Global Calculator

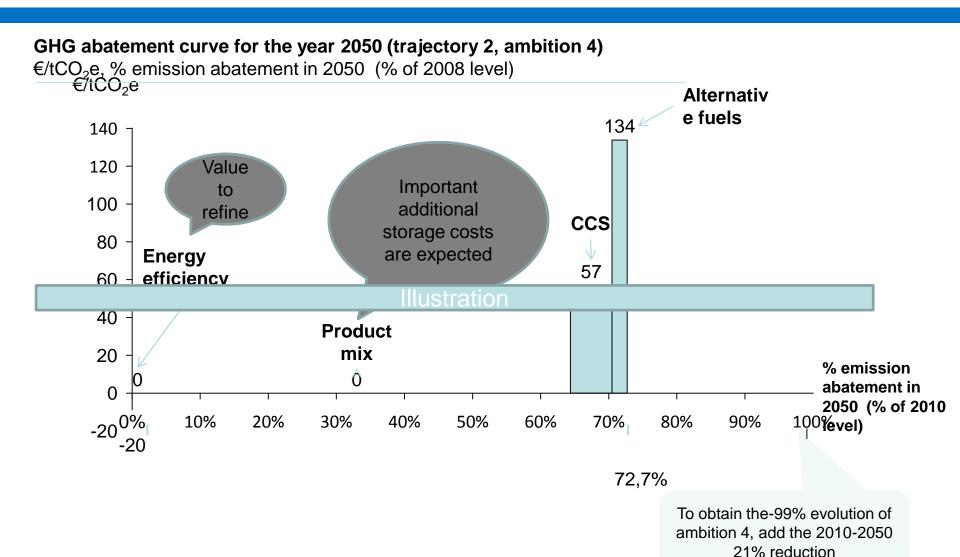

NOTES: (1) The population follows the average UN projection in all four trajectories

(2) Excluding biomass related reductions & electricity related emissions

(3) Other sectors are impacted by these transitions (e.g. additional emissions are created in the timber sector)

Figures of July 2014 Global Calculator

Cement GHG emissions in 2050, for ambition level $3^{(1,2)}$, using different levers⁽³⁾ (MtCO₂e, % of 2010)


NOTES: (1) The population follows the average UN projection in all four trajectories

(2) Excluding biomass related reductions & electricity related emissions

(3) Other sectors are impacted by these transitions (e.g. additional emissions are created in the aluminium and plastics sectors) Percentage reductions are calculated vs the 2010 baseline

Costs

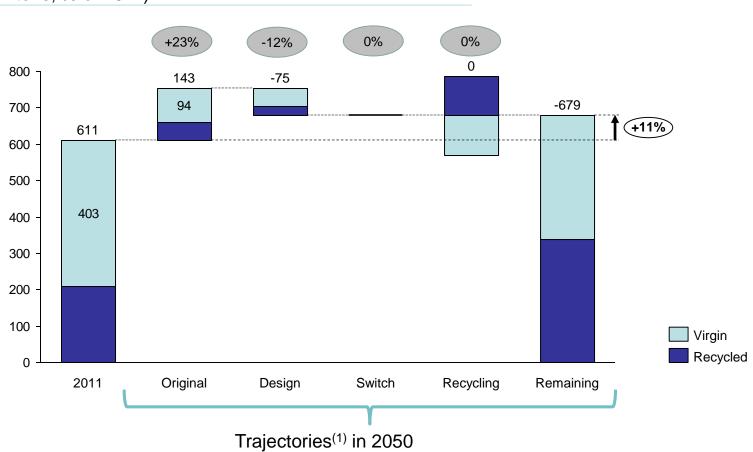
In cement, most of the potential comes from the use of composition

Agenda

Global **C**alculator

2050 evolution of materials and emissions

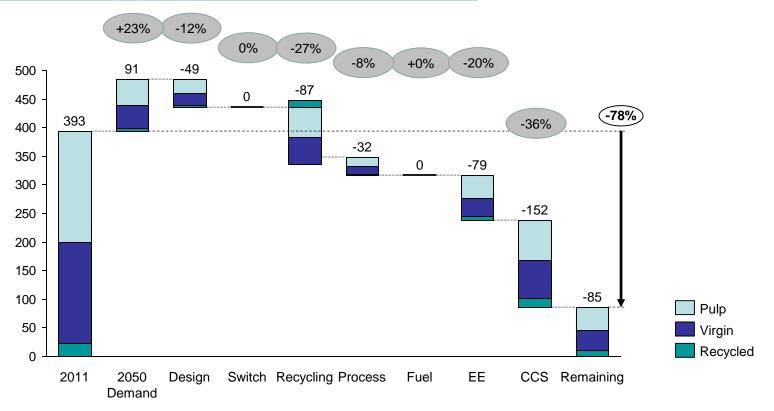
Materials demand evolution


- Cross sector demand
- · Cross sector material switch
- Steel
- Chemicals
- Aluminium
- Cement
- Paper & Timber

Reduction potential on the manufacturing processes

- Resulting emissions
- Discussion on ambition levels across sectors
- Discussion on CCS
- Steel
- Chemicals
- Aluminium
- Cement
- Paper, Timber & Other

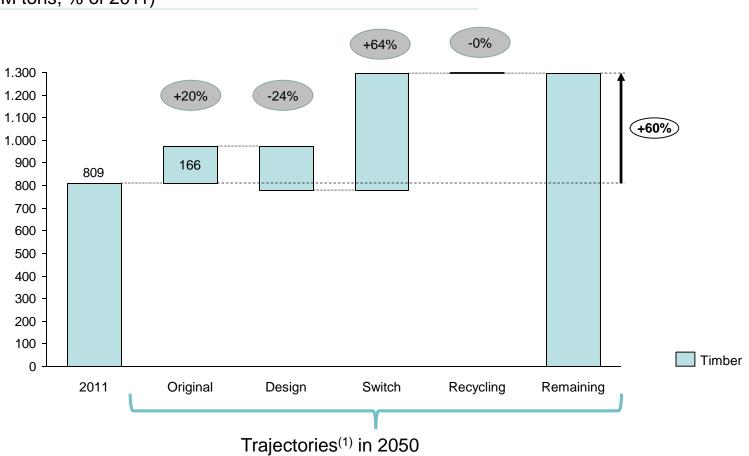
Figures of July 2014 Global Calculator


Paper production for ambition level 3 (M tons, % of 2011)

NOTE: (1) The population follows the average UN projection in all four trajectories (2) Assuming biomass emits, not including electricity related emissions SOURCE: IEA ETP 2012, Global calculator model

Figures of July 2014 Global Calculator

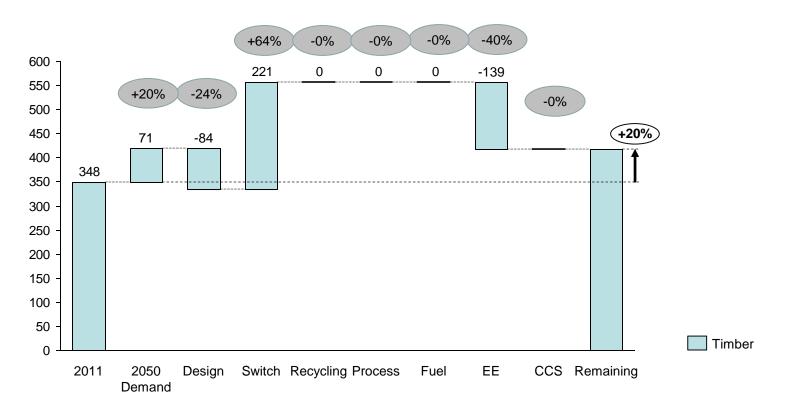
Paper GHG emissions in 2050, for ambition level $3^{(1,2)}$, using different levers⁽³⁾ (MtCO₂e, % of 2010)


NOTES: (1) The population follows the average UN projection in all four trajectories

(2) Excluding biomass related reductions & electricity related emissions

(3) Other sectors are impacted by these transitions (e.g. additional emissions are created in the aluminium and plastics sectors) Percentage reductions are calculated vs the 2010 baseline

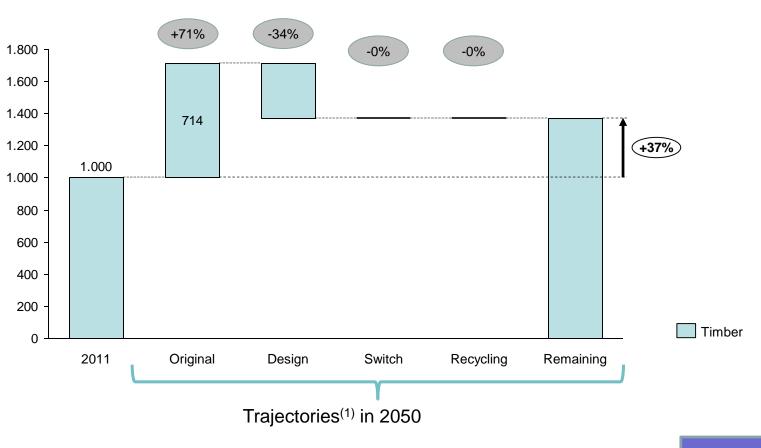
Figures of July 2014 Global Calculator


Timber production for ambition level 3 (M tons, % of 2011)

NOTE: (1) The population follows the average UN projection in all four trajectories (2)Assuming biomass emits, not including electricity related emissions SOURCE: IEA ETP 2012, Global calculator model

Figures of July 2014 Global Calculator

Timber GHG emissions in 2050, for ambition level $3^{(1,2)}$, using different levers⁽³⁾ (MtCO₂e, % of 2010)

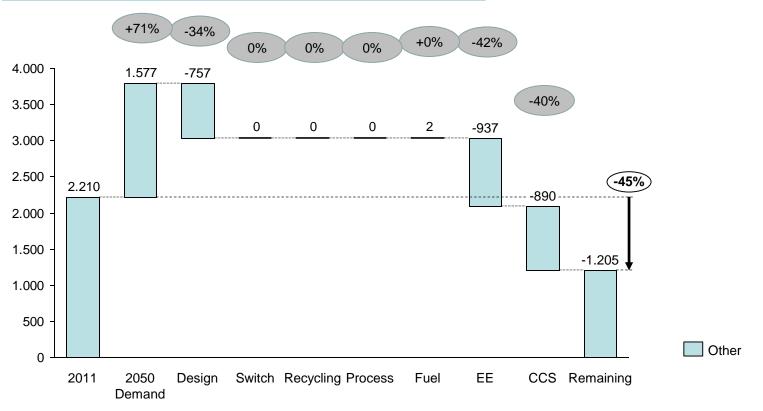

NOTES: (1) The population follows the average UN projection in all four trajectories

(2) Excluding biomass related reductions & electricity related emissions

(3) Other sectors are impacted by these transitions (e.g. additional emissions are created in the aluminium and plastics sectors) Percentage reductions are calculated vs the 2010 baseline

Figures of July 2014 Global Calculator

Other production for ambition level 3 (M tons, % of 2011)



NOTE: (1) The population follows the average UN projection in all four trajectories (2)Assuming biomass emits, not including electricity related emissions SOURCE: IEA ETP 2012, Global calculator model

Production of other materia

Figures of July 2014 Global Calculator

Other GHG emissions in 2050, for ambition level $3^{(1,2)}$, using different levers⁽³⁾ (MtCO₂e, % of 2010)

NOTES: (1) The population follows the average UN projection in all four trajectories

(2) Excluding biomass related reductions & electricity related emissions

(3) Other sectors are impacted by these transitions (e.g. additional emissions are created in the aluminium and plastics sectors)

Percentage reductions are calculated vs the 2010 baseline SOURCE: IEA ETP 2012, Global calculator model

Thank you.

Michel Cornet - +32 486 92 06 37 - mc@climact.com

